98%
921
2 minutes
20
Ergothioneine (ET), a low-molecular-weight (LMW) thiol, serves as a potent antioxidant. While only a limited number of Actinomycetes and fungi can synthesize ET, most microorganisms acquire it from external sources. Recently, a microbial ET transporter system (EtUV) was identified in Helicobacter pylori and Streptococcus pneumoniae, but the regulatory mechanisms controlling EtUV in bacteria remain unknown. In this study, we identified and characterized OseR, a novel MarR family repressor in Streptococcus suis, a significant pathogen causing systemic diseases such as septicemia and meningitis in pigs and humans. We demonstrated that OseR senses oxidative stress through a thiol switch at Cys35, which regulates the ET transport system EtUV. Under oxidative stress, OseR dissociates from the promoter region of the ET transport operon due to the formation of an intermolecular disulfide bond, leading to the activation of EtUV expression. Our findings reveal that OseR not only controls ET transport but also modulates other LMW thiol transport pathways, including glutathione and cysteine, as well as genes involved in oxidative stress responses. Deletion or mutation of oseR significantly impairs oxidative stress tolerance, survival in mouse macrophages, and virulence in mice. Similarly, deletion or mutation of etU, which encodes a transmembrane permease essential for ET uptake, markedly reduces oxidative stress tolerance and virulence in mice. Importantly, our results suggest that OseR-mediated regulation of the ET transport system, driven by a thiol-based switch, may be conserved across bacterial species, highlighting a broader role for OseR in bacterial adaptation to host environments. This study advances our understanding of the regulatory mechanisms governing ET uptake in bacteria and provides new insights into the link between ET and bacterial pathogenicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12341727 | PMC |
http://dx.doi.org/10.1016/j.redox.2025.103790 | DOI Listing |
Chem Biodivers
September 2025
Department of Pharmaceutical Analysis, School of Pharmacy, Hebei Medical University, Shijiazhuang, People's Republic of China.
Usnic acid, a compound from Usneae Filum, has shown notable antitumor effects. Nevertheless, the mechanism of its anti-NSCLC action remains incompletely elucidated. This study used metabolomics, network pharmacology, molecular docking, and dynamics simulation to investigate usnic acid's potential mechanism on NSCLC utilizing A549 cell samples.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Nephrology, Chungnam National University, Daejeon, Republic of Korea.
Diabetic kidney disease (DKD) involves oxidative stress-driven damage to glomeruli (Gloms) and proximal convoluted tubules (PCT). NAD(P)H: quinone oxidoreductase 1 (NQO1) regulates redox balance, but its compartment-specific role remains unclear. Streptozotocin (STZ)-induced hyperglycemia increased albuminuria and foot process effacement, with NQO1 KO (NKO) mice exhibiting greater podocyte injury than WT, indicating exacerbated glomerular damage.
View Article and Find Full Text PDFBackground: Anemia is common in hemodialysis patients, and iron supplementation is essential for its management. However, the impact of baseline inflammation on the efficacy of oral versus intravenous iron remains unclear.
Methods: This post hoc analysis of the IHOPE trial included 193 maintenance hemodialysis patients stratified by median baseline high-sensitivity C-reactive protein (hsCRP).
J Infect Dis
September 2025
Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA.
Background: Women are disproportionately affected by neuropsychiatric symptoms following recovery from acute COVID-19. However, whether there are central nervous system-specific changes in gene expression in women with neuropsychiatric Long COVID (NP-Long COVID) remains unknown.
Methods: Twenty-two women with and ten women without NP-Long COVID were enrolled from New Haven, CT, and the surrounding region and consented to a blood draw and large volume lumbar puncture.
J Vis Exp
August 2025
Department of Cardiology, First Hospital of Nanping City affiliated to Fujian Medical University;
Myocardial ischemia-reperfusion injury (MIRI) endures as a substantial impediment to the management of cardiovascular disease. The pathophysiology of MIRI is complex, involving oxidative stress, calcium overload, inflammation, and apoptosis. The NRG1/ErbB4 signaling pathway has been implicated in modulating oxidative stress responses in the heart, potentially reducing cellular damage caused by free radicals.
View Article and Find Full Text PDF