Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aims: Semaglutide (SEMA) is a glucagon-like peptide-1 receptor agonist (GLP-1RA) that has recently emerged as a popular pharmacological treatment for type 2 diabetes and insulin resistance due to its weight loss properties. Previous studies have examined the metabolic effects of SEMA using supra-pharmacokinetically (but not pharmacokinetically attainable) concentrations. The aim of the present study was to determine the metabolic effects of pharmacokinetically attainable levels of SEMA on mitochondrial function and metabolism, which are often reduced during insulin resistance.

Methods: C2C12 myotubes were treated for 24 h with SEMA at 10 nM which approximates pharmacokinetically attainable blood concentrations in vivo. Metabolic gene expression was measured using qRT-PCR. pAkt expression was assessed using Western blot. Seahorse metabolic assays were also used to measure mitochondrial and glycolytic metabolism. Fluorescent staining was used to assess mitochondrial and lipid content.

Results: Treatment with SEMA did not alter mitochondrial function, content, or related gene expression. Similarly, SEMA had no significant effect on glycolytic metabolism or related gene expression, nor did it alter cellular lipid content or lipogenic signaling.

Conclusions: High concentrations of SEMA may promote mitochondrial function during in vitro experiments, however the findings from the present report suggest pharmacokinetically attainable levels of SEMA do not alter myotube metabolism or expression of related molecular targets. Disparities in the present report and past observations may be a result of the lower concentrations of SEMA used in the present experiments. Further in vivo studies will be necessary to elucidate the full metabolic effects of SEMA on skeletal muscle.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mce.2025.112629DOI Listing

Publication Analysis

Top Keywords

mitochondrial function
16
pharmacokinetically attainable
16
metabolic effects
12
gene expression
12
sema
10
insulin resistance
8
effects sema
8
attainable levels
8
levels sema
8
glycolytic metabolism
8

Similar Publications

Modulating Placental Functionality in Preeclampsia With siRNA Nanocomplexes.

Hypertension

September 2025

Department of Obstetrics and Gynecology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu (Z.W.).

Background: Early-onset preeclampsia poses significant risks to maternal and fetal health, necessitating a deeper understanding of its molecular mechanisms and effective therapeutic strategies.

Methods: Utilizing data from genome-wide association study and Mendelian randomization analysis, we investigated the relationship between mitochondrial DNA copy number and preeclampsia. Transcriptome sequencing, in vitro experiments, and animal studies were conducted to explore the roles of SENP3 and SETD7 in preeclampsia pathogenesis.

View Article and Find Full Text PDF

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).

View Article and Find Full Text PDF

Mitochondrial ClpX Inhibition Induces Ferroptosis and Blocks Pancreatic Cancer Cell Proliferation.

Chembiochem

September 2025

School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, 310024, P. R. China.

The ATPase caseinolytic protease X (ClpX), forming the ClpXP complex with caseinolytic protease P (ClpP), is essential for mitochondrial protein homeostasis. While ClpP targeting is a recognized anticancer strategy, the role of ClpX in cancer remains underexplored. In pancreatic ductal adenocarcinoma (PDAC), elevated CLPX expression correlates with poor prognosis, suggesting its oncogenic function.

View Article and Find Full Text PDF

Background And Aims: Gut-liver axis has been implicated in the pathophysiology of cirrhosis due to metabolic dysfunction-associated steatotic liver disease (MASLD), an in vitro model for studying epithelial gut dysfunction in MASLD is lacking. In this study, we aimed to characterise intestinal organoids derived from subjects with MASLD.

Materials And Methods: Intestinal organoids were obtained from duodenal samples of individuals with non-fibrotic MASLD and with MASLD-cirrhosis.

View Article and Find Full Text PDF

Background: Migraine pathophysiology involves a constellation of metabolic abnormalities. These interlinked contributory factors include mitochondrial dysfunction, an altered gut microbiome, neuroinflammation, oxidative stress, weight imbalance, and altered glucose metabolism. The ketogenic diet is an emerging therapy which may restore hypometabolism seen in chronic migraine.

View Article and Find Full Text PDF