A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Improved double DQN with deep reinforcement learning for UAV indoor autonomous obstacle avoidance. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Aiming at the problems of insufficient autonomous obstacle avoidance performance of UAVs in complex indoor environments, an improved Double DQN algorithm based on deep reinforcement learning is proposed. The algorithm enhances the perception and learning capabilities by optimizing the network model and employs a dynamic exploration strategy that encourages exploration in the early stage and reduces it later to accelerate convergence and improve efficiency. Simulation experiments in two scenarios of varying complexity, using an indoor simulation environment built with AirSim and UE4(Unreal Engine 4), show that in the simpler scenario, the average cumulative reward increased by 22.88%, the maximum reward increased by 101.56%, the average safe flight distance increased by 23.17%, and the maximum safe flight distance by 105.62%. In the more complex scenario, the average cumulative reward increased by 2.66%, the maximum reward increased by 88.77%, the average safe flight distance increased by 2.05%, and the maximum safe flight distance by 84.68%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12317097PMC
http://dx.doi.org/10.1038/s41598-025-02356-6DOI Listing

Publication Analysis

Top Keywords

reward increased
16
safe flight
16
flight distance
16
improved double
8
double dqn
8
deep reinforcement
8
reinforcement learning
8
autonomous obstacle
8
obstacle avoidance
8
scenario average
8

Similar Publications