98%
921
2 minutes
20
Soil salinity is a major abiotic-stress that severely impacts global agricultural productivity by reducing plant's water-uptake, causing ion toxicity, and disrupting metabolic balance. Beneficial microorganisms, including plant growth-promoting rhizobacteria (PGPR) and fungi, play a remarkable role in mitigating salt-stress through mechanisms such as osmotic adjustment, ion homeostasis, phytohormone regulation, and antioxidant defense systems. Under very high salinity, microbial inoculants also often suffer from poor survival rates, ineffective root colonization, and uneven field performance. Recent developments in nanotechnology have brought fresh approaches to maximize microbial effectiveness, therefore, offering better defense against environmental stresses and enhancing plant-microbe interactions. Under salt stress, engineered nanomaterials including nanocarriers and nano-formulations improve microbial viability, enable regulated administration, and induce biofilm formation, thereby strengthening plant resistance. Furthermore, nanoparticles enhance stress tolerance systems by modulating critical signal transduction pathways and inducing genomic and proteomic changes in microorganisms. Despite these promising benefits, concerns regarding nanoparticle toxicity, environmental persistence, regulatory challenges, and economic feasibility remain largely unaddressed. Comprehensive risk analyses and the creation of environmentally benign, biodegradable nanomaterials are necessary given the possible long-term effects mediated nanoparticles on microbial populations, soil's quality, and including crop's safety. This review explores emerging trends in nano-enabled agricultural applications, critically assesses the mechanistic contribution of nanotechnology in reducing microbial-mediated salinity stress, and addresses important issues and future research directions for the sustainable deployment of nanotechnology in plant stress management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2025.110306 | DOI Listing |
Plant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFBackground: The study aimed to adapt a stress and well-being intervention delivered via a mobile health (mHealth) app for Latinx Millennial caregivers. This demographic, born between 1981 and 1996, represents a significant portion of caregivers in the United States, with unique challenges due to higher mental distress and poorer physical health compared to non-caregivers. Latinx Millennial caregivers face additional barriers, including higher uninsured rates and increased caregiving burdens.
View Article and Find Full Text PDFACS Synth Biol
September 2025
Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China.
The environmental resistance exhibited by microorganisms is concerned with their ability to withstand and adapt to an array of detrimental environmental conditions, with their survival and reproductive success being threatened. Within the realm of biotechnology, which emphasizes stress resistance, a critical role in bacterial adaptive strategies to environmental fluctuations is assumed to be in the periplasmic space. An innovative methodology to augment bacterial tolerance to stress by employing a mucin-mimetic collagen analogue, designated as S1552 (which is secreted into the periplasmic compartment), is introduced by this investigation.
View Article and Find Full Text PDFArch Microbiol
September 2025
Department of Biological Sciences, Wichita State University, 26, 1845 Fairmount, Wichita, KS, 67260, USA.
Freezing point depression due to high salt concentration is crucial for liquid water to exist on cold worlds, expanding special regions where habitats are plausible. Determination of the growth tolerances of terrestrial microbes in analog systems impacts planetary protection protocols aimed at preventing interference with life detection missions or potential native ecosystems on celestial bodies. We measured the salinity tolerances of 18 salinotolerant bacteria (Bacillus, Halomonas, Marinococcus, Nesterenkonia, Planococcus, Salibacillus, and Terribacillus).
View Article and Find Full Text PDFFood Funct
September 2025
Science and Technology Innovation Center, Hunan University of Chinese Medicine, Hunan, China.
Neomangiferin (NG) is an active ingredient extracted from mango, recognized for its antioxidant potential. However, its anti-aging efficacy remains largely unexplored. This study employed () to evaluate the anti-aging activity of NG and investigate the corresponding molecular mechanism.
View Article and Find Full Text PDF