98%
921
2 minutes
20
Zinc (Zn) is an essential nutrient supporting a range of critical processes. In the yeast Saccharomyces cerevisiae, Zn deficiency induces a transcriptional response mediated by the Zap1 activator, which controls a regulon of ∼80 genes. A subset support Zn homeostasis by promoting Zn uptake and its distribution between compartments, while the remainder mediate an 'adaptive response' to enhance fitness of Zn-deficient (ZnD) cells. The peroxiredoxin Tsa1 is a Zap1-regulated adaptive factor essential for the growth of ZnD yeast. Tsa1 can function as an antioxidant peroxidase, protein chaperone, or redox sensor: The latter activity oxidizes associated proteins via a redox relay mechanism. We previously reported that in ZnD cells, Tsa1 inhibits pyruvate kinase (Pyk1) to conserve phosphoenolpyruvate for aromatic amino acid synthesis. However, this regulation makes a relatively minor contribution to fitness in low Zn, suggesting that Tsa1 targets other pathways important to adaptation. Consistent with this model, the redox sensor function of Tsa1 was essential for growth of ZnD cells. Using a maltose binding protein-tagged version of Tsa1, we identified a redox-sensitive non-covalent interaction with Pyk1, and applied this system to identify multiple novel interacting partners. This interactome implicates Tsa1 in the regulation of critical processes including many Zn-dependent metabolic pathways. Interestingly, Zap1 is a Tsa1 target, as Tsa1 strongly promoted the oxidation of Zap1 activation domain 2 and was required for full Zap1 activity. Our findings reveal a novel posttranslational response to Zn deficiency, overlain on and interconnected with the Zap1-mediated transcriptional response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12368497 | PMC |
http://dx.doi.org/10.1093/mtomcs/mfaf028 | DOI Listing |
Metallomics
August 2025
Department of Nutritional Sciences, University of Wisconsin-Madison, Madison WI 53706, United States.
Zinc (Zn) is an essential nutrient supporting a range of critical processes. In the yeast Saccharomyces cerevisiae, Zn deficiency induces a transcriptional response mediated by the Zap1 activator, which controls a regulon of ∼80 genes. A subset support Zn homeostasis by promoting Zn uptake and its distribution between compartments, while the remainder mediate an 'adaptive response' to enhance fitness of Zn-deficient (ZnD) cells.
View Article and Find Full Text PDFbioRxiv
February 2025
Department of Nutritional Sciences, University of Wisconsin-Madison, WI 53706.
Zinc (Zn) is an essential nutrient supporting a range of critical processes. In the yeast , Zn deficiency induces a transcriptional response mediated by the Zap1 activator, which controls a regulon of ~80 genes. A subset support zinc homeostasis by promoting zinc uptake and its distribution between compartments, while the remainder mediate an "adaptive response" to enhance fitness of zinc deficient cells.
View Article and Find Full Text PDFPharmacol Rep
February 2025
Maj Institute of Pharmacology, Department of Neurobiology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
Background: Preclinical and clinical studies have shown that dietary zinc deficiency can lead to symptoms similar to those observed in major depressive disorder (MDD). However, the underlying molecular mechanisms remain unclear. To investigate these mechanisms, we examined proteomic changes in the prefrontal cortex (PFC) and hippocampus (HP) of rats, two critical brain regions implicated in the pathophysiology of depression.
View Article and Find Full Text PDFJ Biol Chem
April 2024
Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA.
Zinc is required for many critical processes, including intermediary metabolism. In Saccharomyces cerevisiae, the Zap1 activator regulates the transcription of ∼80 genes in response to Zn supply. Some Zap1-regulated genes are Zn transporters that maintain Zn homeostasis, while others mediate adaptive responses that enhance fitness.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
September 2023
Hebei Key Laboratory of Reproductive Medicine, Hebei Reproductive Health Hospital, No. 480 Heping Street, Shijiazhuang, 050071, Xinhua District, Hebei, China.
Zinc deficiency has a huge impact on male reproduction. The zinc transporter (ZnT) family is involved in the maintenance of zinc homeostasis and testosterone synthesis. However, the underlying mechanisms remain to be investigated.
View Article and Find Full Text PDF