98%
921
2 minutes
20
Background: Skeletal muscle is the largest tissue in mammals, and it plays a crucial role in metabolism and homeostasis. Skeletal muscle development and regeneration consist of a series of carefully regulated changes in gene expression. Leiomodin2 (LMOD2) gene is specifically expressed in the heart and skeletal muscle. But the physiological functions and mechanisms of LMOD2 on skeletal muscle development are unknown.
Results: In this study, we examined the expression levels of the LMOD2 in porcine tissues and C2C12 cells. LMOD2 is mainly expressed in the heart, followed by skeletal muscle. The expression level of LMOD2 gradually decreased with skeletal muscle growth, but increased after injury. LMOD2 expression levels increased gradually with C2C12 cells proliferation and differentiation. In terms of function, the muscle fiber types were altered after LMOD2 was knocked out in C2C12 cells, MyHC-I and MyHC-2b were inhibited, whereas MyHC-2a and MyHC-2x were promoted. LMOD2 knockout has different effects on LMOD family, LMOD1 expression level was promoted, while LMOD3 was inhibited. Loss of LMOD2 suppressed cell viability and PAX7 protein expression. At the transcriptome level, proliferation-related genes and muscle contraction-related genes were respectively inhibited after LMOD2 knockout. In terms of molecular networks, a series of experiments have shown that MyoG is a transcription factor for LMOD2, while miR-335-3p can negatively regulate LMOD2 expression. We screened ACTC1 as a candidate interacting protein for LMOD2 using protein prediction software and RNA-seq, and Co-IP experiments confirmed the relationship between LMOD2 and ACTC1. In vivo, Lentivirus-mediated LMOD2 knockdown reduces muscle mass. LMOD2 knockdown inhibited MyHC-I mRNA expression, but had no effect on MyHC-2b. The protein expression of MyHC-I, MyHC-2x, and MyHC-2b was suppressed after LMOD2 knockdown.
Conclusions: Collectively, our data indicates that LMOD2 knockout inhibits myoblast proliferation and alters muscle fiber types. MyoG is a transcription factor for LMOD2, while miR-335-3p can negatively regulate LMOD2 expression. Moreover, LMOD2 and ACTC1 interact to regulate myogenic differentiation. Our study provides a new target for skeletal muscle development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12315423 | PMC |
http://dx.doi.org/10.1186/s12864-025-11897-z | DOI Listing |
Am J Forensic Med Pathol
September 2025
Department of Pathology, St Louis University School of Medicine, Office of the Medical Examiner - City of St. Louis, St. Louis, MO.
Myotonic dystrophy type 1, or dystrophia myotonica type 1 (DM1), is a multisystem disorder inherited in an autosomal dominant manner. It is caused by a CTG tri-nucleotide expansion in the 3'-untranslated region (3'-UTR) of the dystrophia myotonia protein kinase (DMPK) gene. Core clinical features include progressive skeletal muscle weakness, myotonia, and systemic complications, with premature mortality most often due to respiratory or cardiac dysfunction.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
October 2025
Division of Rheumatology and Systemic Inflammatory Diseases, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
Aims: Sarcoid myopathy (SaM) is characterised by granulomatous myositis (GM) and can overlap with inclusion body myositis (IBM), a late-onset chronic idiopathic inflammatory myopathy with a still enigmatic pathogenesis. As GM can occur in different clinical contexts, we aimed to examine the histomorphologic features and gene expression profiles in cases of definite SaM that may inform diagnostic and therapeutic considerations.
Methods: We performed a multidimensional characterisation of muscle biopsy specimens from patients with 'pure SaM' (n=17), SaM with concomitant IBM (SaM-IBM) (n=2), including histopathologic and ultrastructural analysis in addition to quantitative real-time polymerase chain reaction.
J Cachexia Sarcopenia Muscle
October 2025
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea.
Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.
Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.
J Endocrinol
September 2025
University of Missouri, Columbia, MO.
Purpose: CL316,243 (CL), a beta 3 adrenergic receptor (B3-AR) agonist has 'exercise mimetic' effects in adipose tissue (AT). CL may also positively affect skeletal muscle (SM), yet the role of estrogen receptor beta (ERβ) in mediating SM-specific effects of CL is not known. We investigated the effects of CL on SM metabolism, as well as the role played by ERβ.
View Article and Find Full Text PDFMol Ther Methods Clin Dev
June 2025
Université Paris-Saclay, University Evry, Inserm, Genethon, Integrare Research Unit UMR_S951, 91000 Evry, France.
Pompe disease is a glycogen storage disorder caused by mutations in the acid α-glucosidase (GAA) gene, leading to reduced GAA activity and glycogen accumulation in heart and skeletal muscles. Enzyme replacement therapy with recombinant GAA, the standard of care for Pompe disease, is limited by poor skeletal muscle distribution and immune responses after repeated administrations. The expression of GAA in muscle with adeno-associated virus (AAV) vectors has shown limitations, mainly the low targeting efficiency and immune responses to the transgene.
View Article and Find Full Text PDF