98%
921
2 minutes
20
Background: Macrophages play a crucial role in the development of early-onset preeclampsia (EOPE), which may be closely associated with an imbalance in macrophage M1/M2 polarization. Mesenchymal stem cell (MSC)-derived apoptotic vesicles (apoVs) have anti-inflammatory, tissue repair, and immunomodulatory functions. MSC-apoVs may ameliorate EOPE by regulating macrophage polarization, but the underlying mechanisms remain to be clarified.
Methods: Macrophage infiltration and M1/M2 polarization were first analyzed in the placentas of PE patients and normal pregancies to identify macrophage alterations in EOPE placentas. MSC-apoVs were extracted and characterized. The effects of MSC-apoVs on macrophage polarization and trophoblasts invasion were validated in vivo and in vitro. miRNA transcriptomic sequencing of MSC-apoVs was conducted to identify key miRNAs involved in macrophage M2 polarization and to investigate upstream and downstream regulation factors, which were further validated in vivo and in vitro.
Results: The proportion of M2 macrophages was significantly reduced in EOPE placentas. MSC-apoVs carrying high levels of miR-191-5p recruited macrophages, downregulated CDK6 protein expression, stabilized mitochondrial membrane potential (MMP), and promoted M2 polarization of macrophages. This enhanced the invasion of trophoblasts and improved EOPE pregnancy outcomes in mice, including reduced blood pressure, decreased urine protein, and improved embryo quality. Overexpression of miR-191-5p mimics in MSC-apoVs further alleviated EOPE-related symptoms, whereas inhibition of miR-191-5p reduced the therapeutic effect of MSC-apoVs. Further experiments confirmed that M2 macrophages polarized by MSC-apoVs promote trophoblasts invasion by secreting platelet-derived growth factor-AB (PDGF-AB), which binds to platelet-derived growth factor receptor-beta (PDGFR-β) on trophoblasts, directly activating the downstream PI3K-AKT-mTOR signaling pathway, thereby improving EOPE.
Conclusion: Our findings reveal the crucial role of M2 macrophages in the pathogenesis of EOPE. MSC-apoVs with high miR-191-5p recruit macrophages, downregulate CDK6, stabilize MMP, and promote M2 polarization, increasing PDGF-AB secretion, which enhances trophoblasts invasion and thereby treat EOPE. Therefore, MSC-apoVs therapy may serve as a promising strategy to improve the prognosis of EOPE.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12312347 | PMC |
http://dx.doi.org/10.1186/s13287-025-04546-5 | DOI Listing |
JCI Insight
September 2025
Diabetes & Metabolism Research Center, University of Utah, Salt Lake City, United States of America.
Impaired muscle regrowth in aging is underpinned by reduced pro-inflammatory macrophage function and subsequently impaired muscle cellular remodeling. Macrophage phenotype is metabolically controlled through TCA intermediate accumulation and activation of HIF1A. We hypothesized that transient hypoxia following disuse in old mice would enhance macrophage metabolic inflammatory function thereby improving muscle cellular remodeling and recovery.
View Article and Find Full Text PDFInfect Immun
September 2025
School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, Nebraska, USA.
Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.
View Article and Find Full Text PDFFASEB J
September 2025
Department of Obstetrics, Obstetrics and Gynecology Center, The First Hospital of Jilin University, Changchun, Jilin, China.
Tumor-associated macrophages (TAMs) act as a vital player in the immunosuppressive tumor microenvironment (TME) and have received widespread attention in the treatment of cancer in recent times. Nevertheless, simultaneously inducing TAM repolarization and strengthening their phagocytic ability on cancer cells is still a significant challenge. Ferroptosis has received widespread attention due to its lethal effects on tumor cells, but its role in TAMs and its impact on tumor progression have not yet been defined.
View Article and Find Full Text PDFGen Physiol Biophys
September 2025
Department of Cardiology, The Fourth Affiliated Hospital of Harbin Medical University, Nangang District, Harbin, Heilongjiang, China.
Exosomes derived from various cells have been demonstrated to contribute to cardiac repair by regulating macrophage polarization in myocardial infarction. However, how exosomes secreted from cardiomyocytes under hypoxia-ischemia (Hypo-Exo) regulate macrophage polarization in the local tissues is elusive. This study aimed to determine the underlying mechanisms by which Hypo-Exo polarized M2 macrophages.
View Article and Find Full Text PDFJ Cardiovasc Pharmacol
September 2025
Department of Cardiovascular Medicine, Liyuan Hospital Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430060, China.
Nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is an important transcriptional regulator that plays a protective role in myocardial remodeling. Omaveloxolone (Omav) acts as an activator of Nrf2 and plays a protective role by decreasing oxidative stress and inflammation. The purpose of this study was to explore the role of Omav in myocardial remodeling and investigate the potential mechanism involved.
View Article and Find Full Text PDF