98%
921
2 minutes
20
The widespread dissemination of misinformation and the diverse public sentiment observed during the COVID-19 pandemic highlight the necessity for accurate sentiment analysis of social media discourse. This study proposes a hybrid deep learning (DL) model that integrates Bidirectional Encoder Representations from Transformers (BERT) for contextual feature extraction with Long Short-Term Memory (LSTM) networks for sequential learning to classify COVID-19-related sentiments. To enhance data quality, advanced text preprocessing techniques, including Unicode normalization, contraction expansion, and emoji conversion, are applied. Additionally, to mitigate class imbalance, Random OverSampling (ROS) is employed, leading to significant improvements in model performance. Before applying ROS, the model exhibited lower accuracy and inconsistent performance across sentiment categories. After balancing the dataset, accuracy for binary classification increased to 92.10%, with corresponding precision, sensitivity, and specificity of 92.10%, 92.10%, and 91.50%, respectively. For three-class sentiment classification, accuracy improved to 89.47%, with precision, sensitivity, and specificity of 89.80%, 89.47%, and 94.10%, respectively. In five-class sentiment classification, accuracy reached 81.78%, with precision, sensitivity, and specificity of 82.19%, 81.78%, and 95.28%, respectively. These findings demonstrate the efficacy of combining deep learning-based sentiment analysis with advanced text preprocessing and class balancing techniques for accurately classifying public sentiment related to COVID-19 across multiple sentiment categories.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12311151 | PMC |
http://dx.doi.org/10.1038/s41598-025-97778-7 | DOI Listing |
J Med Internet Res
September 2025
Artificial Intelligence and Mathematical Modeling Lab, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada.
Background: The H5N1 avian influenza A virus represents a serious threat to both animal and human health, with the potential to escalate into a global pandemic. Effective monitoring of social media during H5N1 avian influenza outbreaks could potentially offer critical insights to guide public health strategies. Social media platforms like Reddit, with their diverse and region-specific communities, provide a rich source of data that can reveal collective attitudes, concerns, and behavioral trends in real time.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Economics, Cornell University, Ithaca, United States of America.
In this paper, we study the impact of momentum, volume and investor sentiment on U.S. tech sector stock returns using Principal Component Analysis-Hidden Markov Model (PCA-HMM) methodology.
View Article and Find Full Text PDFJ Med Internet Res
September 2025
Department of Psychological and Brain Sciences, Boston University, Boston, United States.
Background: Lesbian, gay, bisexual, transgender, queer/questioning, intersex, asexual (LGBTQIA+) researchers and participants frequently encounter hostility in virtual environments, particularly on social media platforms where public commentary on research advertisements can foster stigmatization. Despite a growing body of work on researcher virtual hostility, little empirical research has examined the actual content and emotional tone of public responses to LGBTQIA+-focused research recruitment.
Objective: This study aimed to analyze the thematic patterns and sentiment of social media comments directed at LGBTQIA+ research recruitment advertisements, in order to better understand how virtual stigma is communicated and how it may impact both researchers and potential participants.
Public Health Ethics
November 2025
Centre for International Health, University of Otago, Dunedin, New Zealand.
The COVID-19 pandemic has revealed the complex interplay between national self-interest and global cooperation. Media communication can contribute to the formation of national identity and promote nationalist themes, particularly in times of crisis. Media portrayals of the nation during a pandemic are informative, since nationalism, specifically health nationalism, may undermine the popular appetite for and effectiveness of global response efforts.
View Article and Find Full Text PDFAsian J Psychiatr
September 2025
Department of Psychiatry and Mental Health, Faculty of Medicine, Universidad de Chile, Santiago, Chile; Translational Psychiatry Laboratory (Psiquislab), Faculty of Medicine, Universidad de Chile, Santiago, Chile; Millennium Nucleus to Improve the Mental Health of Adolescents and Youths (IMHAY), San
Background: Schizophrenia spectrum disorders often emerge in adolescence or early adulthood and are a leading cause of global disability. Early identification of clinical high‑risk for psychosis (CHR‑P) can reduce comorbidity and shorten untreated psychosis duration, yet clinician‑administered tools (e.g.
View Article and Find Full Text PDF