98%
921
2 minutes
20
Consumers are particularly fond of jackfruit for its strong tropical aroma and distinctive flavor. However, significant differences in aroma and taste exist among various jackfruit varieties. This study investigated the aroma characteristics and metabolic profiles of two representative jackfruit cultivars, QY1H and XM1H. Results revealed distinct aroma profiles between the two varieties. Lipidomics analysis indicated remarkable differences in unsaturated fatty acid metabolism, with linoleic acid metabolism emerging as a key factor contributing to aroma variation. Differences in amino acid metabolism, particularly in leucine levels, were closely associated with aroma divergence in various jackfruit types. Additionally, carotenoid metabolism varied significantly between the two cultivars, with β-cyclocitral identified as a major aroma component in the XM1H variety. These findings provide new insights into the formation mechanisms of jackfruit aroma and offer valuable data for enhancing flavor quality and guiding future breeding programs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12305738 | PMC |
http://dx.doi.org/10.1016/j.fochx.2025.102806 | DOI Listing |
Nutr Rev
September 2025
Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India.
Pomegranate (Punica granatum L) is a rich source of bioactive compounds, including punicalagin, ellagic acid, anthocyanins, and urolithins, which contribute to its broad pharmacological potential. This review summarizes evidence from in vitro and in vivo experiments, as well as clinical studies, highlighting pomegranate's therapeutic effects in inflammation, metabolic disorders, cancer, cardiovascular disease, neurodegeneration, microbial infections, and skin conditions. Mechanistic insights show modulation of pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), alpha serine/threonine-protein kinase (AKT1), and nuclear factor erythroid 2-related factor 2 (Nrf2).
View Article and Find Full Text PDFPlant J
September 2025
Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea.
Salt stress impairs photosynthetic efficiency and consequently reduces the growth, development, and grain yield of crop plants. The formation of hydrophobic barriers in the root endodermis, including the suberin lamellae and Casparian strips, is a key adaptive strategy for salt stress tolerance. In this study, we identified the role of the rice NAC transcription factor, ONAC005, in salt stress tolerance.
View Article and Find Full Text PDFJMIR Res Protoc
September 2025
Department of Medical Oncology, Early Phase Unit, Georges-François Leclerc Centre, Dijon, France.
Background: Sarcomas are rare cancer with a heterogeneous group of tumors. They affect both genders across all age groups and present significant heterogeneity, with more than 70 histological subtypes. Despite tailored treatments, the high metastatic potential of sarcomas remains a major factor in poor patient survival, as metastasis is often the leading cause of death.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P.R. China.
Sleep deprivation (SD) is a major contributor to cognitive impairment, often accompanied by central neuroinflammation and gut microbiota dysbiosis. The tryptophan (TRP) pathway, activated via indoleamine 2,3-dioxygenase (IDO), serves as a critical link between immune activation and neuronal damage. Umbelliferone (UMB), a naturally occurring coumarin compound, possesses anti-inflammatory, antioxidant, and microbiota-modulating properties.
View Article and Find Full Text PDFSci Signal
September 2025
Department of Surgery, University of Alabama Birmingham, Birmingham, AL 35233, USA.
Amphetamines are psychostimulants that are commonly used to treat neuropsychiatric disorders and are prone to misuse. The pathogenesis of amphetamine use disorder (AUD) is associated with dysbiosis (an imbalance in the body's microbiome) and bacterially produced short-chain fatty acids (SCFAs), which are implicated in the gut-brain axis. Amphetamine exposure in both rats and humans increases the amount of intestinal , which releases SFCAs.
View Article and Find Full Text PDF