Embodying Control in Soft Multistable Robots from Morphofunctional Co-design.

Adv Sci (Weinh)

School of Mechanical Engineering, Purdue University, West Lafayette, IN, 47907, USA.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Soft robots are distinguished by their flexibility and adaptability, allowing them to perform nearly impossible tasks for rigid robots. However, controlling their behavior is challenging due to their nonlinear material response and infinite degrees of freedom. A potential solution to these challenges is to discretize their infinite-dimensional configuration space into a finite but sufficiently large number of functional modes with programmed dynamics. A strategy is presented for co-designing the desired tasks and morphology of pneumatically actuated soft robots with multiple encoded stable states and dynamic responses. This approach introduces a general method to capture the soft robots' response using an energy-based analytical model, the parameters of which are obtained using Recursive Feature Elimination. The resulting lumped-parameter model enables the inverse co-design of the robot's morphology and planned tasks by embodying specific dynamics upon actuation. This approach's ability to explore the configuration space is shown by co-designing kinematics with optimized stiffnesses and time responses to obtain robots capable of classifying the size and weight of objects and displaying adaptable locomotion with minimal feedback control. This strategy offers a framework for simplifying the control of soft robots by exploiting the mechanics of multistable structures and embodying mechanical intelligence into soft material systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12407363PMC
http://dx.doi.org/10.1002/advs.202503206DOI Listing

Publication Analysis

Top Keywords

soft robots
12
control soft
8
configuration space
8
soft
6
robots
6
embodying control
4
soft multistable
4
multistable robots
4
robots morphofunctional
4
morphofunctional co-design
4

Similar Publications

Many soft, tough materials have emerged in recent years, paving the way for advances in wearable electronics, soft robotics, and flexible displays. However, understanding the interfacial fracture behavior of these materials remains a significant challenge, owing to the difficulty of quantifying the respective contributions from viscoelasticity and damage to energy dissipation ahead of cracks. This work aims to address this challenge by labeling a series of polymer networks with fluorogenic mechanophores, subjecting them to T-peel tests at various rates and temperatures, and quantifying their force-induced damage using a confocal microscope.

View Article and Find Full Text PDF

In this article, a biophysically realistic model of a soft octopus arm with internal musculature is presented. The modeling is motivated by experimental observations of sensorimotor control where an arm localizes and reaches a target. Major contributions of this article are: (i) development of models to capture the mechanical properties of arm musculature, the electrical properties of the arm peripheral nervous system (PNS), and the coupling of PNS with muscular contractions; (ii) modeling the arm sensory system, including chemosensing and proprioception; and (iii) algorithms for sensorimotor control, which include a novel feedback neural motor control law for mimicking target-oriented arm reaching motions, and a novel consensus algorithm for solving sensing problems such as locating a food source from local chemical sensory information (exogenous) and arm deformation information (endogenous).

View Article and Find Full Text PDF

Purpose: Robotic arm-assisted total knee arthroplasty (raTKA) has demonstrated several advantages over manual TKA (mTKA), including enhanced early recovery. Reduced soft tissue trauma and avoidance of femoral intramedullary canal opening have been hypothesised to lower the systemic inflammatory response. However, findings from previous small-cohort studies have been inconsistent.

View Article and Find Full Text PDF

Microrobots are expected to push the boundaries of robotics by enabling navigation in confined and cluttered environments due to their sub-centimeter scale. However, most microrobots perform best only in the specific conditions for which they are designed and require complete redesign and fabrication to adapt to new tasks and environments. Here, fully 3D-printed modular microrobots capable of performing a broad range of tasks across diverse environments are introduced.

View Article and Find Full Text PDF

Bimorph Soft Actuators Based on Isostructural Heterogeneous Janus Films.

ACS Nano

September 2025

State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.

Bimorph soft actuators, traditionally composed of two materials with distinct responses to external stimuli, often face durability challenges due to structural incompatibility. Here, we propose an alternative design employing free-standing, isostructural heterogeneous Janus (IHJ) films that harmonize stability with high actuation efficiency. These IHJ films were fabricated through a vacuum self-assembly process, consisting of TiCT MXene nanosheets and hybrid graphene oxide (GO)-biomass bacterial cellulose (BC), with a well-matched two-dimensional lattice structure.

View Article and Find Full Text PDF