98%
921
2 minutes
20
(pepper) is an economically vital genus in the family, with most species possessing about 3 Gb genomes. However, the recently sequenced (~1.7 Gb) represents the first reported case of an extremely compact genome in , providing a unique and ideal model for studying genome size evolution. To elucidate the mechanisms driving this variation, we performed comparative genomic analyses between the compact and the reference cv. CM334 (~2.9 Gb). Although their genome size differences initially suggested whole-genome duplication (WGD) as a potential driver, both species shared two ancient WGD events with identical timing, predating their divergence and thus ruling out WGD as a direct contributor to their size difference. Instead, transposable elements (TEs), particularly long terminal repeat retrotransposons (LTR-RTs), emerged as the dominant force shaping genome size variation. Genome size strongly correlated with LTR-RT abundance, and multiple LTR-RT burst events aligned with major phases of genome expansion. Notably, the integrity and transcriptional activity of LTR-RTs decline over evolutionary time; older insertions exhibit greater structural degradation and reduced activity, reflecting their dynamic nature. This study systematically delineated the evolutionary trajectory of LTR-RTs-from insertion and proliferation to decay-uncovering their pivotal role in driving genome size evolution. Our findings advance the understanding of plant genome dynamics and provide a framework for studying genome size variation across diverse plant lineages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12298681 | PMC |
http://dx.doi.org/10.3390/plants14142136 | DOI Listing |
Nat Biotechnol
September 2025
European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK.
The size of microbial sequence databases continues to grow beyond the abilities of existing alignment tools. We introduce LexicMap, a nucleotide sequence alignment tool for efficiently querying moderate-length sequences (>250 bp) such as a gene, plasmid or long read against up to millions of prokaryotic genomes. We construct a small set of probe k-mers, which are selected to efficiently sample the entire database to be indexed such that every 250-bp window of each database genome contains multiple seed k-mers, each with a shared prefix with one of the probes.
View Article and Find Full Text PDFAm J Hum Genet
September 2025
Stanley Manne Children's Research Institute, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL 60611, USA; Department of Pediatrics and Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA. Electronic address: erid
Fetal brain anomalies identified by prenatal ultrasound and/or magnetic resonance imaging represent a considerable healthcare burden with ∼1-2/1,000 live births. To identify the underlying etiology, trio prenatal exome sequencing or genome sequencing (ES/GS) has emerged as a comprehensive diagnostic paradigm with a reported diagnostic rate up to ∼32%. Here, we report five unrelated families with six affected individuals that presented neuroanatomical, craniofacial, and skeletal anomalies, all harboring rare, bi-allelic deleterious variants in SNAPIN, which encodes SNARE-associated protein.
View Article and Find Full Text PDFCurr Microbiol
September 2025
Department of Integrative Biotechnology, Sungkyunkwan University, Natural Science Campus, 2066 Seobu-ro, Jangan-Gu, Suwon-Si, Gyeonggi-Do, 16419, Republic of Korea.
A novel bacterial strain, SM-13 was isolated from the rhizospheric soil of Epipremnum aureum (Jade Pothos) sampled in Suwon, Republic of Korea. The isolate was Gram-stain-negative, aerobic, motile, rod-shaped, cream-coloured, oxidase- and catalase-positive. Strain SM-13 grew at the range of 15-37 °C (optimum, 25 °C), at pH 6.
View Article and Find Full Text PDFJ Appl Microbiol
September 2025
Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashihiroshima 739-8528, Japan.
Aims: This study aims to investigate the genomic profile of a multidrug-resistant Escherichia coli strain, 160-11H1, co-carrying an extended-spectrum β-lactamase (ESBL) and the plasmid-mediated mobile colistin resistance gene, mcr-5.
Methods And Results: The entire genome of the strain was sequenced using Illumina MiSeq and Oxford Nanopore platforms, and de novo assembly was performed using Unicycler. The genome size was 5 031,330 bp and comprised 5 140 coding sequences.
Adv Sci (Weinh)
September 2025
State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, 266071, China.
Pufferfish exhibit the smallest vertebrate genomes, making them ideal models for investigating evolutionary patterns and processes that affect genome size. While the Takifugu rubripes genome was fully sequenced two decades ago, key evolutionary drivers remain elusive. We sequenced 10 pufferfish genomes and generated 35 transcriptomes and 13 methylomes to understand genomic evolutionary mechanisms.
View Article and Find Full Text PDF