98%
921
2 minutes
20
Automated fiber placement (AFP) composites exhibit complex mechanical behaviors due to manufacturing-induced mesostructural variations, including resin-rich regions and tow gaps that significantly influence both local stress distributions and global material responses. This study presents a hierarchically nested modeling framework based on the Parametric High-Fidelity Generalized Method of Cells (PHFGMC) to predict the effective elastic properties and nonlinear mechanical response of AFP composites. The PHFGMC model integrates micro- and meso-scale analyses using representative volume elements (RVEs) derived from micrographs of AFP composite laminates to capture these manufacturing-induced characteristics. Multiple RVE configurations with varied gap patterns are analyzed to quantify the influence of mesostructural features on global stress-strain response. Predictions for linear and nonlinear elastic behaviors are validated against experimental results from carbon fiber/epoxy AFP specimens, demonstrating good quantitative agreement with measured responses. A cohesive extension of the PHFGMC framework further captures damage initiation and crack propagation under transverse tensile loading, revealing failure mechanisms specifically associated with tow gaps and resin-rich areas. By systematically accounting for manufacturing-induced variability through detailed RVE modeling, the nested PHFGMC framework enables the accurate prediction of global mechanical performance and localized behavior, providing a robust computational tool for optimizing AFP composite design in aerospace and other high-performance applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12300319 | PMC |
http://dx.doi.org/10.3390/ma18143394 | DOI Listing |
Int J Pharm X
June 2025
Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China.
Ultra-sensitive pH-responsive drug delivery system designed to operate within the slightly acidic microenvironment of tumors are highly desired for hydrogel applications in cancer therapy. In this study, 4-Formylbenzoic acid modified polyvinyl alcohol (PVA-FBA, PF) was synthesized and utilized as a carrier for encapsulating the anticancer drug Doxorubicin (Dox). This was subsequently crosslinked with polyethylenimine (PEI) via benzoic-imine bond to form drug-loaded PVA-FBA/PEI hydrogel (D-PFP).
View Article and Find Full Text PDFAm J Ophthalmol
September 2025
Bascom Palmer Eye Institute, University of Miami, Miami, FL, USA. Electronic address:
Purpose: To compare retinal ganglion cell (RGC) loss in glaucoma suspect eyes with diffuse versus localized neuroretinal rim loss at the time of the first confirmed visual field defect.
Design: Prospective observational cohort study.
Subjects: Fifty-three glaucoma suspect eyes and 124 healthy eyes.
PLoS One
September 2025
Korea University College of Medicine, Seoul, Republic of Korea.
Purpose: To develop and validate a deep learning-based model for automated evaluation of mammography phantom images, with the goal of improving inter-radiologist agreement and enhancing the efficiency of quality control within South Korea's national accreditation system.
Materials And Methods: A total of 5,917 mammography phantom images were collected from the Korea Institute for Accreditation of Medical Imaging (KIAMI). After preprocessing, 5,813 images (98.
Ophthalmol Glaucoma
September 2025
Glaucoma Center of Excellence, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA. Electronic address:
Purpose: To assess the clinical outcomes of Hydrus Microstent implantation with cataract extraction for the treatment of open angle glaucoma (OAG) over a maximum of 4 years.
Design: Retrospective, single-center, single-arm, longitudinal cohort study.
Subjects: 308 patients (464 eyes) with OAG who underwent Hydrus Microstent implantation with cataract extraction between February 2019 and December 2021, followed for a median (interquartile range, IQR) of 2.
Histochem Cell Biol
September 2025
The Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
Quantifying myofiber size is essential for assessing the health and function of skeletal muscle. Although several ImageJ plugins are currently available for myofiber segmentation and size quantification, significant challenges remain-most notably limited accuracy and poor compatibility with hematoxylin and eosin (H&E)-stained skeletal muscle cross sections. In this study, we introduce MyoAnalyst, an ImageJ plugin designed to enable automated analysis of both immunofluorescence (IF)- and H&E-stained skeletal muscle cross sections.
View Article and Find Full Text PDF