Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The prevalence of type 2 diabetes mellitus (T2DM) in Korea has risen in recent years, yet many cases remain undiagnosed. Advanced artificial intelligence models using multi-modal data have shown promise in disease prediction, but two major challenges persist: the scarcity of samples containing all desired data modalities and class imbalance in T2DM datasets. We propose a novel transfer learning framework to predict T2DM onset within five years, using two Korean cohorts (KoGES and SNUH). To utilize unpaired multi-modal data, our approach transfers knowledge between clinical and genetic domains, leveraging unpaired clinical data alongside paired data. We also address class imbalance by applying a positively weighted binary cross-entropy (BCE) loss and a weighted random sampler (WRS). The transfer learning framework improved T2DM prediction performance. Using WRS and weighted BCE loss increased the model's balanced accuracy and AUC (achieving test AUC 0.8441). Furthermore, combining transfer learning with intermediate data fusion yielded even higher performance (test AUC 0.8715). These enhancements were achieved despite limited paired multi-modal samples. Our framework effectively handles scarce paired data and class imbalance, leading to improved T2DM risk prediction. This approach can be adapted to other medical prediction tasks and integrated with additional data modalities, potentially aiding earlier diagnosis and better disease management in clinical settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307585PMC
http://dx.doi.org/10.1038/s41598-025-05532-wDOI Listing

Publication Analysis

Top Keywords

transfer learning
16
class imbalance
12
data
9
type diabetes
8
unpaired clinical
8
clinical genetic
8
multi-modal data
8
data modalities
8
learning framework
8
paired data
8

Similar Publications

Traditional drug discovery methods like high-throughput screening and molecular docking are slow and costly. This study introduces a machine learning framework to predict bioactivity (pIC₅₀) and identify key molecular properties and structural features for targeting Trypanothione reductase (TR), Protein kinase C theta (PKC-θ), and Cannabinoid receptor 1 (CB1) using data from the ChEMBL database. Molecular fingerprints, generated via PaDEL-Descriptor and RDKit, encoded structural features as binary vectors.

View Article and Find Full Text PDF

Oral bioavailability property prediction based on task similarity transfer learning.

Mol Divers

September 2025

Laboratory of Molecular Design and Drug Discovery, School of Science, China Pharmaceutical University, Nanjing, 211198, China.

Drug absorption significantly influences pharmacokinetics. Accurately predicting human oral bioavailability (HOB) is essential for optimizing drug candidates and improving clinical success rates. The traditional method based on experiment is a common way to obtain HOB, but the experimental method is time-consuming and costly.

View Article and Find Full Text PDF

This study explores how differences in colors presented separately to each eye (binocular color differences) can be identified through EEG signals, a method of recording electrical activity from the brain. Four distinct levels of green-red color differences, defined in the CIELAB color space with constant luminance and chroma, are investigated in this study. Analysis of Event-Related Potentials (ERPs) revealed a significant decrease in the amplitude of the P300 component as binocular color differences increased, suggesting a measurable brain response to these differences.

View Article and Find Full Text PDF

Background And Objectives: Older adults living with dementia are a heterogeneous group, which can make studying optimal medication management challenging. Unsupervised machine learning is a group of computing methods that rely on unlabeled data-that is, where the algorithm itself is discovering patterns without the need for researchers to label the data with a known outcome. These methods may help us to better understand complex prescribing patterns in this population.

View Article and Find Full Text PDF