Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Chronic kidney disease (CKD) is a global health challenge, but invasive renal biopsies, the gold standard for diagnosis and prognosis, are often clinically constrained. To address this, we developed the kidney intelligent diagnosis system (KIDS), a noninvasive model for renal biopsy prediction using 13,144 retinal images from 6773 participants. The KIDS achieves an area under the receiver operating characteristic curve (AUC) of 0.839-0.993 for CKD screening and accurately identifies the five most common pathological types (AUC: 0.790-0.932) in a multicenter and multi-ethnic validation, outperforming nephrologists by 26.98% in accuracy. Additionally, the KIDS further predicts disease progression based on pathological classification. Given its flexible strategy, the KIDS can be adapted to local conditions to provide a tailored tool for patients. This noninvasive model has the potential to improve CKD clinical management, particularly for those who are ineligible for biopsies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12307705 | PMC |
http://dx.doi.org/10.1038/s41467-025-62273-0 | DOI Listing |