Photoprotective Effects of Quercetin and Hesperidin in Polymorphous Light Eruption: A Comparative Study with Alpha-Glucosylrutin.

Curr Issues Mol Biol

Molecular Dermatology Laboratory, Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polymorphous Light Eruption (PLE) is a prevalent UV-induced photodermatosis characterized by abnormal immune responses, oxidative stress, and cutaneous inflammation. Alpha-glucosylrutin (AGR), a chemically modified flavonoid widely used for its antioxidant and photoprotective effects, has shown clinical efficacy; however, its synthetic origin and classification as a potential skin sensitizer and aquatic toxin raise safety and environmental concerns. These limitations underscore the need for safer, naturally derived alternatives. In this study, we investigated the comparative efficacy of quercetin (QC) and hesperidin (HPN)-two plant-based flavonoids-against AGR in in vitro and ex vivo models of sun-induced skin damage. An optimized QC:HPN 8:1 (/) complex significantly restored antioxidant enzyme activities (SOD: 4.11 ± 0.32 mU/mg; CAT: 1.88 ± 0.04 mU/mg) and suppressed inflammatory cytokine production (IL-6: 155.95 ± 3.17 pg/mL; TNF-α: 62.34 ± 0.72 pg/mL) more effectively than AGR. β-hexosaminidase secretion, a marker of allergic response, was reduced to 99.02 ± 1.45% with QC:HPN 8:1, compared to 121.33 ± 1.15% with AGR. QC alone exhibited dose-dependent cytotoxicity at ≥10 μg/mL, whereas HPN maintained >94% cell viability at all tested concentrations. These findings highlight the QC:HPN 8:1 complex as a safe, natural, and effective alternative to synthetic AGR for preventing and managing PLE and UV-induced dermal inflammation. Further research should focus on clinical validation and formulation development for topical use.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293743PMC
http://dx.doi.org/10.3390/cimb47070567DOI Listing

Publication Analysis

Top Keywords

photoprotective effects
8
quercetin hesperidin
8
polymorphous light
8
light eruption
8
qchpn complex
8
agr
5
effects quercetin
4
hesperidin polymorphous
4
eruption comparative
4
comparative study
4

Similar Publications

Effect of Oxygen Exposure on the Triplet Excitation Dynamics of the Monomeric LHCII Complex from Spinach.

J Phys Chem B

September 2025

Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.

Light-harvesting complex IIs (LHCIIs) are the major antenna in higher plants, balancing light capture through photoprotection. While it naturally forms trimers, stress conditions can induce monomerization, altering pigment interactions. Here, we explored how molecular oxygen affects triplet excited-state dynamics in LHCII monomers using time-resolved transient absorption spectroscopy under aerobic and anaerobic conditions.

View Article and Find Full Text PDF

As hyperpigmentation can worsen with exposure to ultraviolet (UV) and visible light (VL), sunscreens with well-balanced UVB/UVA protection and VL-blocking pigments are recommended. Assessing efficiency against VL-induced pigmentation is then mandatory. Recently, an in vivo pigmentation assessment allowing a VL protection factor (pVL-PF) determination, and an in vitro predictive method based on transmittance measures were introduced.

View Article and Find Full Text PDF

Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.

View Article and Find Full Text PDF

Ultraviolet (UV) radiation-induced photodamage remains a critical dermatological challenge, necessitating natural alternatives to synthetic photo-protectants. This study aimed to evaluate the anti-photodamage potential of fermented Sphagnum moss filtrate (SMFF) through integrated metabolomic, cellular and in vivo analyses. Untargeted metabolomics identified 933 metabolites, with fermentation significantly enriching taurine, glycine derivatives and phenolic acids while activating glycine/serine and taurine/hypotaurine metabolic pathways critical for redox homeostasis.

View Article and Find Full Text PDF

Bacterial cellulose-FucoPol composite hydrogel dressings for advanced wound treatment.

Int J Biol Macromol

September 2025

Associate Laboratory i4HB - Institute for Health and Bioeconomy, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, NOVA University Lisbon, 2829-516 Caparica, P

Effective wound management relies on dressings that prevent infection and facilitate healing, which has driven research into advanced, cost-effective therapeutic dressings. Bacterial cellulose (BC) is highly valued for use in wound dressings given its mechanical strength, nanoporous structure, high water-holding capacity, and excellent biocompatibility. While BC promotes debridement and maintains moisture for wound healing, it lacks essential bio-functional properties, which can be addressed through incorporation of other compounds.

View Article and Find Full Text PDF