Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Optimization exercises strive toward increasing the efficacy and selectivity of small molecules toward the target of interest while simultaneously phasing out design elements that lead to off-target interactions. Given the nonequilibrium nature of biological systems, greater reliance should be placed on engineering kinetic selectivity in addition to equilibrium thermodynamic selectivity; however, the rational design of kinetic selectivity is a challenging endeavor. This study presents a systematic knowledge-based approach to the design of inhibitors that vary in their binding kinetics for Bruton's tyrosine kinase (BTK), a target for treating B-cell malignancies and autoimmune diseases. A detailed kinetic assessment was performed on existing BTK inhibitors, which, together with structural studies, provided critical insights into BTK-inhibitor interactions that control the kinetics of enzyme inhibition. Subsequently, a series of pyrazolopyrimidines was designed with the objective of modifying interactions between the inhibitor and the regulatory (R) spine in the kinase back pocket, which were hypothesized to modulate the stability of the transition state on the binding reaction coordinate. This resulted in the development of BTK inhibitors with extended residence time in which the variation in and was uncoupled from equilibrium thermodynamic affinity.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c07063DOI Listing

Publication Analysis

Top Keywords

binding kinetics
8
kinetics bruton's
8
bruton's tyrosine
8
tyrosine kinase
8
kinetic selectivity
8
equilibrium thermodynamic
8
btk inhibitors
8
modulating binding
4
inhibitors
4
kinase inhibitors
4

Similar Publications

Development of suitable carbohydrate-decorated, biocompatible, and stimuli-responsive fluorescent microgels that can selectively bind and detect proteins (such as lectins) is an important research topic. Herein, we report the development of mannose-decorated, dual-stimuli (temperature and pH)-responsive fluorescent poly(aminoamide) microgels, which can selectively bind to and thereby detect the presence of concanavalin A (Con A). The resultant stimuli-responsive microgels have a lower critical solution temperature (VPTT) of 37.

View Article and Find Full Text PDF

Dual-functional hydrochar via hydrothermal carbonization for norfloxacin removal: Fractal adsorption kinetics and mechanism elucidation.

Sci Total Environ

September 2025

Laboratoire Physico-Chimie des Matériaux, Substances Naturelles et Environnement, Faculty of Sciences and Techniques, Abdelmalek Essaâdi University, Tangier, Morocco.

Escalating concentrations of norfloxacin (NFX) in surface and wastewaters demand sustainable remediation strategies. In this study, dual-functional hydrochars were synthesized from argan nut shells (ArNS) via hydrothermal carbonization (HTC), with process conditions optimized by varying temperature (150-200 °C) and residence time (2-6 h). Among the materials, H1:5@150-4-prepared at 150 °C for 4 h with a biomass-to-water ratio of 1:5-exhibited the best performance, achieving a monolayer NFX adsorption capacity of 27.

View Article and Find Full Text PDF

Heterojunctions have garnered significant attention in the field of photocatalysis due to their exceptional ability to facilitate the separation of photogenerated charge carriers and their high efficiency in hydrogen reaction. However, their overall photocatalytic performance is often constrained by electron transport rates and suboptimal hydrogen adsorption/desorption kinetics. To address these challenges, this study develops a g-CN/MoS@MoC dual-effect synergistic solid-state Z-type heterojunction, synthesized through the in-situ sulfurization of MoC combined with ultrasonic self-assembly technique.

View Article and Find Full Text PDF

Alpha-2-macroglobulin (A2M) is a critical biomarker implicated in inflammation, immune regulation, coagulation, and various pathological conditions such as liver fibrosis, neurodegenerative diseases, and cancers. However, its precise quantification remains challenging due to complex conformational dynamics, subtle abundance fluctuations, and interference from plasma proteins. Here, we present a label-free dynamic single-molecule sensing (LFDSMS) strategy for the sensitive and specific detection of A2M.

View Article and Find Full Text PDF

The advantage of periodic over constant signalling in microRNA-mediated regulation.

Nucleic Acids Res

September 2025

Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Cells may exploit oscillatory gene expression to encode biological information. Temporal features of oscillations, such as pulse frequency and amplitude, are determinant for the outcome of signalling pathways. However, little effort has been devoted to unveiling the role of pulsatility in the context of post-transcriptional gene regulation, where microRNAs act by binding to RNAs and regulate their expression.

View Article and Find Full Text PDF