Sorption of textile azo dyes by and characterization of the interaction.

Int J Phytoremediation

Institute for the Application of Nuclear Energy (INEP), University of Belgrade, Belgrade, Republic of Serbia.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

was tested for textile dye removal. Sorption of Direct Blue 78 was achieved slowly by the leaf (63% after 24 h), while sorption of Basic Red 18 was fast by the stem (96% in an hour). Lignocellulose (24.62% in leaf, 41.34% in fresh and 48.05% in old stem) was responsible for the interaction. FTIR spectra and SEM images of native material and with sorbed dye were similar. Negligible quantities of peroxidases (2 μg/g in old stem) pointed to physical forces underlying sorption. pHpzc for stem-BR18 pair was 5.90 and maximum sorption could be achieved in pH interval 4-9. Desorption and repeated sorption defined maximal binding capacity of 20.8 mg BR18/g of stem. BR18 could be desorbed by only 23% with 0.1 M HCl. Small quantities of zinc (0.71-1.13%), copper (0.74-1.43%) and silicon (0.12-0.28%) were detected without significant difference between samples, as well as chlorine (0.24%) in the sample after desorption and in the sample with sorbed 20.8 mg/g BR18. We propose a more thorough investigation of as a sorbent of a wider pallet of dyes, as it exerts a potential for such purpose.

Download full-text PDF

Source
http://dx.doi.org/10.1080/15226514.2025.2538646DOI Listing

Publication Analysis

Top Keywords

sorption
6
sorption textile
4
textile azo
4
azo dyes
4
dyes characterization
4
characterization interaction
4
interaction tested
4
tested textile
4
textile dye
4
dye removal
4

Similar Publications

Flexible metal-organic frameworks (MOFs) have emerged as a new generation of porous materials and are considered for various applications such as sensing, water or gas capture, and water purification. MIL-88 A (Fe) is one of the earliest and most researched flexible MOFs, but to date, there is a lack in the structural aspects that govern its dynamic behaviour. Here, we report the first crystal structure of DMF-solvated MIL-88 A and investigate the impact of real structure effects on the dynamic behaviour of MIL-88 A (Fe), particularly upon water adsorption.

View Article and Find Full Text PDF

Membrane technology for gas separation is more efficient and energy-saving than thermally driven processes, including cryogenic distillation and adsorption. Metal-organic framework (MOF) and related glass membranes hold great potential for precise gas separation, but it remains challenging to construct ultrathin MOF glass membranes and optimize their transport pathways. In this study, a strategy based on vapor-linker deposition and melt-quenching is reported to design ultrathin zeolitic imidazolate framework (ZIF) glass membranes with node-missing defect passageways.

View Article and Find Full Text PDF

Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.

View Article and Find Full Text PDF

Two series of robust pillared metal-organic frameworks (MOFs) are obtained under solvothermal conditions by combining a metal salt with either Hbpdc, biphenyl-4,4'-dicarboxylic acid, or Hpda, 1,4-phenylenediacrylic acid, forming 2D layers, which are pillared by L, an alloxazine derivative of 1,4-di(pyridin-4-yl)benzene using a one-pot three-component strategy. Crystallographic studies reveal the formation of two isomorphous series of compounds, namely 1-M (from Hbpdc with M = Co, Ni, Cu, and Zn) and 2-M (from Hpda with M = Co or Cu). The multifunctional compounds have high decomposition temperatures, and their sorption properties were measured, revealing relatively low surface areas.

View Article and Find Full Text PDF

Bioremediation offers a sustainable strategy for mitigating heavy metal contamination in soil, but is often constrained by slow removal kinetics, limited uptake efficiency, and high implementation costs. This study investigates dried mycelium membranes, rich in surface-bound proteins and high surface area, as a promising biosorbent for in situ Pb(II) remediation in urban soils. Untreated mycelium membranes buried in soil achieved Pb(II) removal efficiencies of ∼70 % and ∼40 % at initial lead soil concentrations of 100 mg/kg and 1500 mg/kg, respectively, within eight days.

View Article and Find Full Text PDF