Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mating disruption is a commercially available management tactic for pyralid moths, which are pests of stored products. However, evaluations of efficacy have had limited replication, which limits the ability to draw conclusions about its effectiveness or the impact of different variables on its efficacy. We evaluated the mating disruption of in 33 retail pet supply stores (6415 to 17,384 m) and the impact of factors such as insect density and application rate on efficacy. Prior to starting MD, the average capture of was 40.2 ± 3.6 moths/trap/month. Immediately after starting treatment, there was a sharp drop in captures (67.8 ± 4.8%) and then a more gradual overall downward. Overall, under mating disruption, the average reduction was 85.0 ± 3.0%. Geographic location, initial moth density, and pheromone application rate did not significantly impact efficacy. Analysis of the relationships between moth captures and mating disruption dispenser density indicated that competitive mechanisms were the primary mechanisms involved. This was the largest replicated assessment of MD for the management of a post-harvest pest and provides valuable foundational and applied insights into the process. Our results show that a standardized MD program can provide pest suppression in retail stores, but it takes time to be fully effective. Finally, identifying the primary mechanism for efficacy provides important information needed for further refinement of MD programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295625PMC
http://dx.doi.org/10.3390/insects16070691DOI Listing

Publication Analysis

Top Keywords

mating disruption
20
retail stores
8
application rate
8
disruption
5
efficacy
5
evaluation mating
4
disruption suppression
4
suppression populations
4
populations retail
4
mating
4

Similar Publications

Gene dysregulation impairs placental angiogenesis in allogeneic pig pregnancies.

Anim Reprod Sci

September 2025

Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE-58185, Sweden.

Embryo transfer (ET) is a valuable reproductive technology in pigs, albeit its efficiency remains significantly lower than that of natural mating or artificial insemination (AI), owing to high embryonic death rates. Critical for embryo survival and pregnancy success is the placenta, which supports conceptus development through nutrient exchange, hormone production, and immune modulation. Alterations in placental development and function may therefore underlie the reduced efficiency of ET.

View Article and Find Full Text PDF

Improved protocol for the vitrification and warming of rat zygotes by optimizing the warming solution and oocyte donor age.

PLoS One

September 2025

Division of Reproductive Engineering, Center for Animal Resources and Development, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan.

Zygotes are used to create genetically modified animals by electroporation using the CRISPR-Cas9 system. Such zygotes in rats are obtained from superovulated female rats after mating. Recently, we reported that in vivo-fertilized zygotes had higher cryotolerance and developmental ability than in vitro-fertilized zygotes in Sprague Dawley (SD) and Fischer 344 rats.

View Article and Find Full Text PDF

has been a pioneering model system for investigations into the genetic bases of behaviour. Studies of circadian activity were some of the first behaviours investigated in flies. The Activity Monitoring (DAM) system by TriKinetics played a key role in establishing the fundamental feedback loop of the circadian clock.

View Article and Find Full Text PDF

The sterile insect technique (SIT) is a highly effective biologically-based method for the suppression of many insect pest populations. SIT efficacy could be improved by methods of male sterilization that avoid the use of irradiation that can result in diminished fitness and mating competitiveness. Alternative sterilization methods include conditional disruption of genes for male fertility, or using their sperm-specific promoters to drive the expression of genes for lethal effectors.

View Article and Find Full Text PDF

The genomics of discrete polymorphisms maintained by disruptive selection.

Trends Ecol Evol

September 2025

Genetics Course, Graduate University for Advanced Studies, Mishima, Shizuoka, Japan; Theoretical Ecology and Evolution Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan.

Disruptive selection can lead to the evolution of discrete morphs. We show that particular genetic architectures, in terms of dominance, epistasis, and linkage, are likely to evolve to produce discrete morphs under disruptive selection. Recent genomic studies have revealed that causative mutations tend to cluster, sometimes as a result of chromosomal rearrangements, but we still know little about the molecular mechanisms of dominance and epistasis.

View Article and Find Full Text PDF