98%
921
2 minutes
20
The enzyme ABH2, one of nine human DNA dioxygenases of the AlkB family, belongs to the superfamily of Fe(II)/α-ketoglutarate-dependent dioxygenases and plays a crucial role in the direct reversal repair of nonbulky alkyl lesions in DNA nucleobases. ABH2 has broad substrate specificity, directly oxidizing DNA damages such as -methyladenine, -methylcytosine, 1,-ethenoadenine, 3,-ethenocytosine, and a number of others. In our investigation, we sought to uncover the subtleties of the mechanisms governing substrate specificity in ABH2 by focusing on several critical amino acid residues situated in its active site. To gain insight into the function of this enzyme, we performed a functional mapping of its active site region, concentrating on pivotal residues, participating in forming a damaged binding pocket of the enzyme (Val99 and Ser125), as well as the residues directly involved in interactions with damaged bases, namely Arg110, Phe124, Arg172, and Glu175. To support our experimental data, we conducted a series of molecular dynamics simulations, exploring the interactions between the ABH2 mutant forms, bearing corresponding substitutions and DNA substrates, and harboring various types of methylated bases, specifically -methyladenine or -methylcytosine. The comparative studies revealed compelling data indicating that alterations in most of the studied amino acid residues significantly influence both the binding affinity of the enzyme for DNA and its catalytic efficiency. Intriguingly, the findings suggest that the mutations impact the catalytic activity of ABH2 to a greater extent than its ability to associate with DNA strands. Collectively, these results show how changes to the active site affect molecular dynamics and reaction kinetics, improving our understanding of the substrate recognition process in this pivotal enzyme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12295762 | PMC |
http://dx.doi.org/10.3390/ijms26146912 | DOI Listing |
Anim Sci J
January 2025
Davies Livestock Research Centre, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia.
As sheep production standards progress, and animals are bred for high production in terms of the number and weight of lambs weaned per ewe, research has identified a difference in the physiology of single lambs compared to multiple born lambs. The current study aimed to report the baseline amino acid (AA) profiles and blood gas concentrations in newborn, Merino single and twin lambs. From 120 days of gestation, 50 single-bearing and 50 twin-bearing, naturally mated Merino ewes were monitored for signs of approaching parturition.
View Article and Find Full Text PDFJ Biomed Sci
September 2025
Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
Background: PPM1D (protein phosphatase Mg⁺/Mn⁺ dependent 1D) is a Ser/Thr phosphatase that negatively regulates p53 and functions as an oncogenic driver. Its gene amplification and overexpression are frequently observed in various malignancies and disruption of PPM1D degradation has also been reported as a cause of cancer progression. However, the precise mechanisms regulating PPM1D stability remain to be elucidated.
View Article and Find Full Text PDFBMC Plant Biol
September 2025
Department of Botany and Microbiology, Faculty of Science, South Valley University, Qena, 83523, Egypt.
Background: Apples are important for human nutrition because these provide vital nutrients, including vitamins and minerals, that are needed for a balanced diet. A suitable environment for the growth and survival of various microorganisms is also provided by multiple nutrients, such as carbohydrates, minerals, vitamins, and amino acids. Penicillium spp.
View Article and Find Full Text PDFNat Metab
September 2025
Department of Bioinformatics and Biochemistry, Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.
Itaconate is an immunomodulatory metabolite that alters mitochondrial metabolism and immune cell function. This organic acid is endogenously synthesized by tricarboxylic acid (TCA) metabolism downstream of TLR signalling. Itaconate-based treatment strategies are under investigation to mitigate numerous inflammatory conditions.
View Article and Find Full Text PDFNat Biotechnol
September 2025
Key Laboratory of RNA Innovation, Science and Engineering, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
Targeted protein degraders hold potential as therapeutic agents to target conventionally 'undruggable' proteins. Here, we develop a high-throughput screen, DEath FUSion Escaper (DEFUSE), to identify small-molecule protein degraders. By conjugating the protein of interest to a fast-acting triggerable death protein, this approach translates target protein degradation into a cell survival phenotype to illustrate the presence of degraders.
View Article and Find Full Text PDF