Lessons learned from a muscle study in nail-patella syndrome.

Orphanet J Rare Dis

Department of Pediatric Neurology, Centre for Neuromuscular Disorders, Centre for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Essen, Germany.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Nail-patella (NPS) syndrome is an autosomal dominant disorder caused by mutations in the LMX1B gene and manifests with involvement of kidneys, nails, eyes as well as skeletal musculature. NPS shows some clinical similarities with Emery-Dreifuss muscular dystrophy. However, thus far human muscle tissue has not been analysed in the context of NPS to precisely clarify the muscular involvement in this multi-systemic disease.

Methods: To study the effects of a missense variant in LMX1B on human skeletal muscle, histological, immunofluorescence and ultra-structural studies were performed on a deltoid muscle biopsy performed at the age of 2 aiming to analyse potential pathologies in muscle fibres in addition to unbiased proteomic profiling to identify dysregulated proteins.

Results: Microscopic work-up of the muscle biopsy revealed no striking pathologies, except for some atrophic fibres. The proteomic analyses unveiled a clustered number of dysregulated keratin proteins among the downregulated proteins.

Conclusion: Although NPS can also present with a muscular phenotype indicated by muscular weakness of the upper extremities, elevated CK levels and contractures of the elbow joint, there is no evidence of primary muscular involvement due to expression of mutant LMX1B. The examination of human skeletal muscle tissue confirmed the findings from the animal models showing that the skeletal muscle symptoms of NPS may be the result of a developmental disorder of the extremities that leads to impaired muscle mobilisation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12306095PMC
http://dx.doi.org/10.1186/s13023-025-03911-0DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
12
muscle
9
muscle tissue
8
muscular involvement
8
human skeletal
8
muscle biopsy
8
nps
5
muscular
5
lessons learned
4
learned muscle
4

Similar Publications

Aims: Skeletal muscle energetic augmentation might be a mechanism via which intravenous iron improves symptoms in heart failure, but no direct measurement of intrinsic mitochondrial function has been performed to support this notion. This molecular substudy of the FERRIC-HF II trial tested the hypothesis that ferric derisomaltose (FDI) would improve electron transport chain activity, given its high dependence on iron-sulfur clusters which facilitate electron transfer during oxidative phosphorylation.

Methods And Results: Vastus lateralis skeletal muscle biopsies were taken before and 2 weeks after randomization.

View Article and Find Full Text PDF

Background: This study explores how relative skeletal muscle mass is associated with the development of metabolic dysfunction-associated steatotic liver disease (MASLD) and the remission of baseline MASLD in a community-based population cohort.

Methods: The study included 1,544 participants with an average age of 58 years. All participants underwent baseline and follow-up assessments in 2015 or 2016.

View Article and Find Full Text PDF

Effects of structured orofacial muscle rehabilitation training on the recovery of facial expression muscles in patients with skeletal class II malocclusion after orthognathic surgery.

Oral Surg Oral Med Oral Pathol Oral Radiol

August 2025

Chief Nurse of Dental Science, State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China. Electronic address:

Objective: This study aimed to investigate the effects of structured orofacial muscle rehabilitation training (OMRT) on the recovery of facial expression muscles in patients with skeletal Class II malocclusion after orthognathic surgery.

Study Design: This randomized controlled trial enrolled 56 skeletal Class II malocclusion patients who underwent orthognathic surgery. The intervention group received structured OMRT, while the control group received standard postoperative care.

View Article and Find Full Text PDF

Skeletal Muscle Alpha Actin (ACTA1) Acetylation Enhances Myosin Binding and Increases Calcium Sensitivity.

Biophys Rep (N Y)

September 2025

Cellular Signal Transduction in the Cardiovascular System COBRE, University of Nevada Reno, Reno, NV 89557; Department of Nutrition, University of Nevada Reno, Reno, NV 89557. Electronic address:

Skeletal muscle alpha actin (ACTA1) is important for muscle contraction and relaxation, with historical studies focused on ACTA1 mutations in muscle dysfunction. Proteomics reports have consistently observed that actin, including ACTA1, is acetylated at multiple lysine sites. However, few reports have studied the effects of actin acetylation on cellular function, and fewer have examined ACTA1 acetylation on skeletal muscle function.

View Article and Find Full Text PDF

Integrative physiology of skeletal muscle for maintaining cognitive health.

J Physiol

September 2025

Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, USA.

Cognitive decline and physical impairment are often linked with ageing, contributing to declines in health span and loss of independence in older adults. Pathological cognitive decline with age is largely considered to be a brain-centric challenge. However, recent findings have begun to challenge this paradigm as the health of peripheral systems, namely skeletal muscle, predict cognitive decline associated with Alzheimer's disease (AD).

View Article and Find Full Text PDF