Background: Nail-patella (NPS) syndrome is an autosomal dominant disorder caused by mutations in the LMX1B gene and manifests with involvement of kidneys, nails, eyes as well as skeletal musculature. NPS shows some clinical similarities with Emery-Dreifuss muscular dystrophy. However, thus far human muscle tissue has not been analysed in the context of NPS to precisely clarify the muscular involvement in this multi-systemic disease.
View Article and Find Full Text PDFObjective: Immune-related adverse events (irAEs) are recognized in oncology, particularly with immune checkpoint inhibitors and other targeted therapies. Brentuximab Vedotin (BV), is an anti-CD30 antibody-drug conjugate- its association with immune-mediated myositis remains unexplored. We report a case of an adolescent with Hodgkin lymphoma (HL) who developed neuropathy and myositis following BV therapy.
View Article and Find Full Text PDFDetergents are key reagents in bottom-up proteomics that create an apparent, yet underappreciated bias on observable proteomes. Maximizing the chemical diversity of detergents in parallelized screens is supposed to maximize observable proteomes if proteomics data sets of different detergents are combined. The aim of our work is to investigate the potential of fusing ionic and nonionic detergent headgroups into hybrid detergents for increasing the observable number of unique protein identities.
View Article and Find Full Text PDFPolymyositis with mitochondrial pathology (PM-Mito) was first identified in 1997 as a subtype of idiopathic inflammatory myopathy. Recent findings demonstrated significant molecular similarities between PM-Mito and inclusion body myositis (IBM), suggesting a trajectory from early to late IBM and prompting the inclusion of PM-Mito as an IBM precursor (early IBM) within the IBM spectrum. Both PM-Mito and IBM show mitochondrial abnormalities, suggesting that mitochondrial disturbance is a crucial element of IBM pathogenesis.
View Article and Find Full Text PDFMitochondrial integrity is fundamental to cellular function, upheld by a network of proteases that regulate proteostasis and mitochondrial dynamics. Among these proteases, AFG3L2 is critical due to its roles in maintaining mitochondrial homeostasis, regulating mitochondrial protein quality, and facilitating mitochondrial biogenesis. Mutations in AFG3L2 are implicated in a spectrum of diseases, including spinocerebellar ataxia type 28 (SCA28) and spastic ataxia 5 (SPAX5), as well as other systemic conditions.
View Article and Find Full Text PDFBackground: Glycogenosis type 11 or deficiency in lactate dehydrogenase A (LDHA) (OMIM: 612933) is an ultra-rare condition of perturbed glycogen metabolism, first described in 1980 in a Japanese patient, and quite rare outside Japan. There are very few cases described in the literature and there is limited awareness of this condition that can easily be misdiagnosed or remain undiagnosed.
Objective: To report on an ultra-rare form of glycogenosis stressing the association with cutaneous features and raise awareness for this rare condition.
Rhabdomyolysis is an acute failure of cellular homeostasis resulting in muscle breakdown, triggered by trauma, infection, drugs or strenuous exercise. Recurrent rhabdomyolysis is often associated with genetic and metabolic defects of skeletal muscle. The sarcoendoplasmic reticulum Ca2+-ATPase 2 (SERCA2), encoded by the ATP2A2 gene, is an intracellular pump located in the sarcoplasmic and endoplasmic reticulum that is essential for maintaining intracellular calcium (Ca2+) homeostasis and is highly expressed in slow-twitch muscle.
View Article and Find Full Text PDFActa Neuropathol Commun
February 2025
Mutations in CHRNE encoding the epsilon subunit of acetylcholine receptor result in impaired neuromuscular transmission and congenital myasthenic syndrome (CMS) with variying severity of symptoms. Although the pathophysiology is well-known, blood biomarker signatures enabling a patient-stratification are lacking. This retrospective two-center-study includes 19 recessive CHRNE-patients (AChR deficiency; mean age 14.
View Article and Find Full Text PDFProteomics accelerates diagnosis and research of muscular diseases by enabling the robust analysis of proteins relevant for the manifestation of neuromuscular diseases in the following aspects: (i) evaluation of the effect of genetic variants on the corresponding protein, (ii) prediction of the underlying genetic defect based on the proteomic signature of muscle biopsies, (iii) analysis of pathophysiologies underlying different entities of muscular diseases, key for the definition of new intervention concepts, and (iv) patient stratification according to biochemical fingerprints as well as (v) monitoring the success of therapeutic interventions. This review presents-also through exemplary case studies-the various advantages of mass proteomics in the investigation of genetic muscle diseases, discusses technical limitations, and provides an outlook on possible future application concepts. Hence, proteomics is an excellent large-scale analytical tool for the diagnostic workup of (hereditary) muscle diseases and warrants systematic profiling of underlying pathophysiological processes.
View Article and Find Full Text PDFGiant axonal neuropathy (GAN) is a progressive neurodegenerative disease affecting the peripheral and central nervous system and is caused by bi-allelic variants in the GAN gene, leading to loss of functional gigaxonin protein. A treatment does not exist, but a first clinical trial using a gene therapy approach has recently been completed. Here, we conducted the first systematic study of GAN patients treated by German-speaking child neurologists.
View Article and Find Full Text PDFGNE myopathy, also known as hereditary inclusion body myopathy (HIBM), is a rare genetic muscle disorder marked by a gradual onset of muscle weakness in young adults. GNE myopathy (GNEM) is caused by bi-allelic variants in the UDP--acetylglucosamine 2-epimerase (UDP-GlcNAc 2-epimerase)/-acetylmannosamine kinase (ManNAc kinase) gene (), clinically resulting in the loss of ambulation within 10-20 years from the onset of the initial symptoms. The disease's mechanism is poorly understood and non-invasive biomarkers are lacking, hindering effective therapy development.
View Article and Find Full Text PDFMalformations of the brain are common and vary in severity, from negligible to potentially fatal. Their causes have not been fully elucidated. Here, we report pathogenic variants in the core protein-folding machinery TRiC/CCT in individuals with brain malformations, intellectual disability, and seizures.
View Article and Find Full Text PDFTo gain a deeper understanding of skeletal muscle function in younger age and aging in elderly, identification of molecular signatures regulating these functions under physiological conditions is needed. Although molecular studies of healthy muscle have been conducted on adults and older subjects, there is a lack of research on infant muscle in terms of combined morphological, transcriptomic and proteomic profiles. To address this gap of knowledge, we performed RNA sequencing (RNA-seq), tandem mass spectrometry (LC-MS/MS), morphometric analysis and assays for mitochondrial maintenance in skeletal muscle biopsies from both, infants aged 4-28 months and adults aged 19-65 years.
View Article and Find Full Text PDFBackground And Purpose: Spinal muscular atrophy (SMA) as the second most common neurodegenerative disorder in childhood is characterized by the deficiency of survival of motor neuron (SMN) protein leading predominantly to degeneration of alpha motor neurons and consequently to progressive muscle weakness and atrophy. Besides some biomarkers like SMN2 copy number therapeutic biomarkers for SMA with known relevance for neuromuscular transmission are lacking. Here, we examined the potential of Thrombospondin-4 (TSP4) to serve as a cerebrospinal fluid (CSF) biomarker, which may also indicate treatment response.
View Article and Find Full Text PDFJ Neuropathol Exp Neurol
November 2024
Skelet Muscle
July 2024
Background: TCF4 acts as a transcription factor that binds to the immunoglobulin enhancer Mu-E5/KE5 motif. Dominant variants in TCF4 are associated with the manifestation of Pitt-Hopkins syndrome, a rare disease characterized by severe mental retardation, certain features of facial dysmorphism and, in many cases, with abnormalities in respiratory rhythm (episodes of paroxysmal tachypnea and hyperventilation, followed by apnea and cyanosis). Frequently, patients also develop epilepsy, microcephaly, and postnatal short stature.
View Article and Find Full Text PDFCongenital hydrocephalus (CH), occurring in approximately 1/1,000 live births, represents an important clinical challenge due to the limited knowledge of underlying molecular mechanisms. The discovery of novel CH genes is thus essential to shed light on the intricate processes responsible for ventricular dilatation in CH. Here, we identify FLVCR1 (feline leukemia virus subgroup C receptor 1) as a gene responsible for a severe form of CH in humans and mice.
View Article and Find Full Text PDFMyasthenia gravis is a chronic antibody-mediated autoimmune disease disrupting neuromuscular synaptic transmission. Informative biomarkers remain an unmet need to stratify patients with active disease requiring intensified monitoring and therapy; their identification is the primary objective of this study. We applied mass spectrometry-based proteomic serum profiling for biomarker discovery.
View Article and Find Full Text PDFBi-allelic variants in VWA1, encoding Von Willebrand Factor A domain containing 1 protein localized to the extracellular matrix (ECM), were linked to a neuromuscular disorder with manifestation in child- or adulthood. Clinical findings indicate a neuromyopathy presenting with muscle weakness. Given that pathophysiological processes are still incompletely understood, and biomarkers are still missing, we aimed to identify blood biomarkers of pathophysiological relevance: white blood cells (WBC) and plasma derived from six VWA1-patients were investigated by proteomics.
View Article and Find Full Text PDFBackground: NEFL encodes for the neurofilament light chain protein. Pathogenic variants in NEFL cause demyelinating, axonal and intermediate forms of Charcot-Marie-Tooth disease (CMT) which present with a varying degree of severity and somatic mutations have not been described yet. Currently, 34 different CMT-causing pathogenic variants in NEFL in 174 patients have been reported.
View Article and Find Full Text PDFSpinal muscular atrophy (SMA) is a neuromuscular disorder caused by recessive pathogenic variants affecting the survival of motor neuron (SMN1) gene (localized on 5q). In consequence, cells lack expression of the corresponding protein. This pathophysiological condition is clinically associated with motor neuron (MN) degeneration leading to severe muscular atrophy.
View Article and Find Full Text PDFBackground: Presently, antibody concentration measurements for patients undergoing treatment are predominantly determined by ELISA, which still comes with known disadvantages. Therefore, our aim was to establish a targeted mass-spectrometric assay enabling the reproducible absolute quantification of peptides from the hypervariable and interaction regions of infliximab.
Methods: Peptides of infliximab were measured post-trypsin digestion and subsequent separation on a Vanquish Horizon UHPLC coupled to a TSQ Altis Triple-Quad mass spectrometer.
Myotonic dystrophy type 2 (DM2) is an autosomal-dominant multisystemic disease with a core manifestation of proximal muscle weakness, muscle atrophy, myotonia, and myalgia. The disease-causing CCTG tetranucleotide expansion within the CNBP gene on chromosome 3 leads to an RNA-dominated spliceopathy, which is currently untreatable. Research exploring the pathophysiological mechanisms in myotonic dystrophy type 1 has resulted in new insights into disease mechanisms and identified mitochondrial dysfunction as a promising therapeutic target.
View Article and Find Full Text PDFJ Neuromuscul Dis
March 2024
Background: The NADH dehydrogenase [ubiquinone] iron-sulfur protein 6 (NDUFS6) gene encodes for an accessory subunit of the mitochondrial membrane respiratory chain NADH dehydrogenase (complex I). Bi-allelic NDUFS6 variants have been linked with a severe disorder mostly reported as a lethal infantile mitochondrial disease (LMID) or Leigh syndrome (LS).
Objective: Here, we identified a homozygous variant (c.