98%
921
2 minutes
20
Remaining useful life (RUL) prediction plays a core role in industrial prognostics and health management (PHM), requiring data-driven models with higher predictive capability for accurate long time series prediction. Developing reliable deep learning-based models based on multi-sensor monitoring data is fundamental for accurately predicting vibration trends during bearing operation and is crucial for bearing fault diagnosis and RUL prediction. In this work, a method for constructing a health index based on vibration signal is developed to describe the performance features of rolling bearings, which mainly includes feature extraction, sensitive feature index selection, dimensionality reduction, and normalization methods. In addition, a new RUL prediction method, TCN-Transformer, is developed which can efficiently learn and integrate local and global features of vibration signals, addressing the long time series prediction problem in RUL prediction. The TCN extracts local features, while the Transformer learns global features, both of which are seamlessly integrated through a specially designed feature fusion attention module. Both the health indicator (HI) constructed from extracted time domain and frequency domain feature parameters and the RUL prediction method were rigorously validated using the IEEE PHM 2012 Data Challenge dataset for rolling bearing prognostics. By employing the proposed HI construction method, the average comprehensive bearing performance index, used to evaluate RUL prediction accuracy, is improved by 8.69% across the entire dataset compared to the original feature-based composite index. The proposed RUL prediction model can more accurately predict the RUL of rolling bearings under different conditions, reducing the RMSE and MAE by 14.62% and 9.26%, respectively, and improving the SCORE by 13.04%. These results underscore the efficacy and superiority of our approach in RUL prediction of rotating machinery across varying conditions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12158285 | PMC |
http://dx.doi.org/10.3390/s25113571 | DOI Listing |
Sci Rep
September 2025
Henan Xj Metering Co., Ltd, Xuchang, 461000, Henan, China.
The precise estimation of the Remaining Useful Life (RUL) of lithium-ion batteries is essential for averting unforeseen failures and enhancing operational efficiency and maintenance planning. This paper presents an advanced deep learning framework that couples a spatial-attention mechanism with a Transductive Long Short-Term Memory (TLSTM) model, augmented by one-dimensional dilated convolutional layers to capture long-range temporal dependencies. In contrast to traditional LSTM or GRU models, our methodology utilizes one-dimensional dilated convolutional layers to effectively capture long-range temporal relationships and implements a clustering-based Differential Evolution (DE) strategy for resilient weight initialization and optimization.
View Article and Find Full Text PDFSensors (Basel)
August 2025
School of Physics, Liaoning University, Chongshan Campus, Shenyang 110031, China.
Etching has become a critical step in semiconductor wafer fabrication, and its importance in semiconductor manufacturing highlights the fact that it directly determines the ability of the fab to produce high-process products, as well as the application performance of the chip. While the health of the etcher is a concern, especially for the cooling system, accurately predicting the remaining useful life (RUL) of the etcher cooling system is a critical task. Predictive maintenance (PDM) can be used to monitor the basic condition of the equipment by learning from historical data, and it can help solve the task of RUL prediction.
View Article and Find Full Text PDFSensors (Basel)
August 2025
The Department of Power Engineering and Computer Science, Faculty of Engineering, "Vasile Alecsandri" University of Bacau, 600115 Bacau, Romania.
Unmanned Aerial Vehicles have started to be used more and more due to the benefits they bring. Failure of Unmanned Aerial Vehicle components may result in loss of control, which may cause property damage or personal injury. In order to increase the operational safety of the Unmanned Aerial Vehicle, the implementation of a Predictive Maintenance system using the Internet of Things is required.
View Article and Find Full Text PDFSensors (Basel)
July 2025
Sustainable Infrastructure and Resource Management (SIRM), UniSA STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.
In recent years, domain adaptation (DA) has been extensively applied to predicting the remaining useful life (RUL) of bearings across conditions. Although traditional DA-based methods have achieved accurate predictions, most methods fail to extract multi-scale degradation information, focus only on global-scale DA, and ignore the importance of temporal weights. These limitations hinder further improvements in prediction accuracy.
View Article and Find Full Text PDFSensors (Basel)
July 2025
Zhijian Laboratory, Rocket Force University of Engineering, Xi'an 710025, China.
With the deepening of degradation, the stability and reliability of the degrading system usually becomes poor, which may lead to random jumps occurring in the degradation path. A non-homogeneous jump diffusion process model is introduced to more accurately capture this type of degradation. In this paper, the proposed degradation model is translated into a state-space model, and then the Monte Carlo simulation of the state dynamic model based on particle filtering is employed for predicting the degradation evolution and estimating the remaining useful life (RUL).
View Article and Find Full Text PDF