Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Building an accurate atomic structure model of a protein into a cryo-electron microscopy (cryo-EM) map at worse than 3 Å resolution is difficult. To facilitate this task, we devised a method for assigning the amino acid residue sequence to the backbone fragments traced in an input cryo-EM map (EMSequenceFinder). EMSequenceFinder relies on a Bayesian scoring function for ranking 20 standard amino acid residue types at a given backbone position, based on the fit to a density map, map resolution, and secondary structure propensity. The fit to a density is quantified by a convolutional neural network that was trained on ~5.56 million amino acid residue densities extracted from cryo-EM maps at 3-10 Å resolution and corresponding atomic structure models deposited in the Electron Microscopy Data Bank (EMDB). We benchmarked EMSequenceFinder by predicting the sequences of 58,044 distinct ɑ-helix and β-strand fragments, given the fragment backbone coordinates fitted in their density maps. EMSequenceFinder identifies the correct sequence as the best-scoring sequence in 77.8% of these cases. We also assessed EMSequenceFinder on separate datasets of cryo-EM maps at resolutions from 4 to 6 Å. The accuracy of EMSequenceFinder (58%) was better than that of three tested state-of-the-art methods, including findMysequence (45%), ModelAngelo (27%), and sequence_from_map in Phenix (12.9%). We further illustrate EMSequenceFinder by threading the Severe Acute Respiratory Syndrome Coronavirus 2 Non-Structural Protein 2 sequence into eight cryo-EM maps at resolutions from 3.7 to 7.0 Å. EMSequenceFinder is implemented in our open-source Integrative Modeling Platform (IMP) program. Thus, it is expected to be helpful for integrative structure modeling based on a cryo-EM map and other information, such as models of protein complex components and chemical crosslinks between them. EMSequenceFinder is available as part of our open-source IMP distribution at https://integrativemodeling.org/.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302279PMC
http://dx.doi.org/10.1002/pro.70217DOI Listing

Publication Analysis

Top Keywords

amino acid
16
cryo-em map
12
acid residue
12
cryo-em maps
12
emsequencefinder
9
density map
8
atomic structure
8
fit density
8
maps resolutions
8
map
6

Similar Publications

Design and Fabrication of Flexible Silk Fibroin/Lanthanide Ion Membranes with Multifunctional Properties of Fluorescence, Humidity Sensitivity, and Conductivity.

ACS Appl Mater Interfaces

September 2025

College of Chemistry and Chemical Engineering, Instrumental Analysis Center of Qingdao University, Qingdao Application Technology Innovation Center of Photoelectric Biosensing for Clinical Diagnosis and Treatment, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials, Qing

Silk fibroin (SF)-based flexible electronic/photonic materials have gained great attention in wearable devices and soft sensors. However, it remains challenging to understand the molecular interaction mechanisms and subsequently fabricate SF-based flexible materials that exhibit fluorescence, humidity sensitivity, and conductivity properties. In this study, by incorporating lanthanide europium ion (Eu), the design and fabrication of a flexible, fluorescent, and conductive SF membrane was proposed.

View Article and Find Full Text PDF

Visible Light-Driven Benzylic C(sp)-H Carboxylation Enables Synthesis of C-Labeled (±)-α-Amino Acids with C-Formate.

Org Lett

September 2025

Frontiers Science Center for Transformative Molecules, State Key Laboratory of Polyolefins and Catalysis, State Key Laboratory of Synergistic Chem-Bio Synthesis, Zhang Jiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai 200240, China.

C-labeled α-amino acids are important molecules in biological studies and drug development. Cost-effective synthesis of α-amino acids with a high level of C incorporation under mild conditions remains limited. Herein, we report the development of a benzylic C(sp)-H carboxylation method to prepare highly C-labeled α-amino acids, i.

View Article and Find Full Text PDF

Antimicrobial peptides (AMPs) have emerged as promising candidates for combating drug-resistant pathogens and certain cancer types. However, their therapeutic applications are often limited by undesired hemolytic activity, while many AMPs exhibit only moderate potency. Herein, the "helical wheel rotation" strategy as a simple, cost-effective, and modular approach to optimize the pharmacological properties of amphipathic α-helical AMPs without altering their amino acid composition is explored.

View Article and Find Full Text PDF

Tailoring Active Sites in Amorphous NiFe-MOFs through Pyridine Ligand Coordination for Enhanced Oxygen Evolution Performance.

ACS Appl Mater Interfaces

September 2025

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, Changzhou University, Changzhou 213164, P. R. China.

The development of high-performance, cost-effective non-noble metal catalysts for the oxygen evolution reaction (OER) is critical to advancing sustainable hydrogen production via water electrolysis. Herein, we report a facile and mild strategy for synthesizing amorphous bimetallic organic framework materials (NiFe-MOFs) using pyridine-modified threonine (l-PyThr) as an organic ligand. The optimized NiFe-PyThr-4:1 catalyst exhibits remarkable OER activity, requiring low overpotentials of only 162 and 222 mV to achieve current densities of 10 and 100 mA cm, respectively, along with a small Tafel slope of 34.

View Article and Find Full Text PDF

N460S in PB2 and I163T in nucleoprotein synergistically enhance the viral replication and pathogenicity of influenza B virus.

PLoS Pathog

September 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China.

Influenza B viruses (IBVs), though often overshadowed by influenza A viruses (IAVs), remain a significant global public health concern, particularly during seasons when they predominate. However, the molecular mechanisms underlying IBV pathogenicity remain largely unknown. In this study, we identified two amino acid substitutions, PB2-N460S and NP-I163T, from IBV clinical isolates with distinct replication and pathogenicity profiles.

View Article and Find Full Text PDF