Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Virus-like particles (VLPs) offer potentially high-immunogenicity/low-cost vaccine platforms. SARS-CoV-2 VLPs production is achieved via transient transfection of genes encoding viral structural proteins, but is costly and difficult to scale up. To address this problem, stable VLPs-producing cell lines are desirable. In this study, we achieved efficient VLPs production by HEK293T cells after transient transfection of four plasmids containing the S, M, N, and E genes with optimized codons. Moreover, spike-specific IgG antibodies were elicited in mice, though no significant neutralizing activity was detected at the tested time points. Transmission electron microscopy (TEM) revealed that the VLPs diameters were approximately 120 nm. However, overexpression of E or M proteins was toxic to the cells. Stable cell lines were established by constructing two plasmids, in which E and M expression was controlled by an inducible Tet-on promoter and they were placed adjacent to S and N, respectively. A HEK293T cell line for stable expression of SARS-CoV-2 VLPs was established by co-selection with two antibiotics, puromycin and blasticidin. Specific IgG antibodies against the S protein were detected in mice immunized with VLPs formulated with the alum adjuvant. Our findings provide an effective approach for large-scale production of SARS-CoV-2 VLPs as vaccine candidates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302831PMC
http://dx.doi.org/10.1186/s12896-025-01016-xDOI Listing

Publication Analysis

Top Keywords

cell lines
12
sars-cov-2 vlps
12
production sars-cov-2
8
virus-like particles
8
stable cell
8
vlps production
8
transient transfection
8
igg antibodies
8
vlps
7
production
4

Similar Publications

Adeno-associated virus (AAV) vectors are widely used in gene therapy, particularly for liver-targeted treatments. However, predicting human-specific outcomes, such as transduction efficiency and hepatotoxicity, remains challenging. Reliable models are urgently needed to bridge the gap between preclinical studies and clinical applications.

View Article and Find Full Text PDF

Reconstructing bone defects remains a significant challenge in clinical practice, driving the urgent need for advanced artificial grafts that simultaneously promote vascularization and osteogenesis. Addressing the critical trade-off between achieving high porosity/strength and effective bioactivity at safe ion doses, we incorporated strontium (Sr) into β-tricalcium phosphate (β-TCP) scaffolds with a triply periodic minimal surface (TPMS) structure using digital light processing (DLP)-based three-dimensional (3D) printing. Systematically screening Sr concentrations (0-10 mol%), we identified 10 mol% as optimal, leveraging the synergy between the biomimetic TPMS architecture, providing exceptional mechanical strength (up to 1.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) are DNA-protein structures released during a form of programmed neutrophil death known as NETosis. While NETs have been implicated in both tumor inhibition and promotion, their functional role in cancer remains ambiguous. In this study, we compared the NET-forming capacity and functional effects of NETs derived from lung cancer (LC) patients and healthy donors (H).

View Article and Find Full Text PDF

Integrative profiling of lung cancer biomarkers EGFR, ALK, KRAS, and PD-1 with emphasis on nanomaterials-assisted immunomodulation and targeted therapy.

Front Immunol

September 2025

Department of Thoracic Surgery, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology; The Second Clinical Medical College, Jinan University), Shenzhen, Guangdong, China.

Background: Lung cancer remains the leading cause of cancer-related mortality globally, primarily due to late-stage diagnosis, molecular heterogeneity, and therapy resistance. Key biomarkers such as EGFR, ALK, KRAS, and PD-1 have revolutionized precision oncology; however, comprehensive structural and clinical validation of these targets is crucial to enhance therapeutic efficacy.

Methods: Protein sequences for EGFR, ALK, KRAS, and PD-1 were retrieved from UniProt and modeled using SWISS-MODEL to generate high-confidence 3D structures.

View Article and Find Full Text PDF

Follicular dendritic cell sarcoma (FDCS) is a rare tumour derived from dendritic cells located in B-follicles that play a pivotal role in the adaptive immune response. Surgery is the mainstay of treatment for localized disease; however, the management of unresectable or advanced disease is less well-defined. To date, to the best of our knowledge, there is no established or preferred chemotherapeutic regimen, although a number of regimens (primarily used in lymphomas and sarcomas) have been utilized with suboptimal outcomes.

View Article and Find Full Text PDF