Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Toxoplasma gondii cytoskeleton is a highly organized structure essential for parasite motility, replication, and host cell invasion. To identify its components, a highly enriched fraction of tachyzoite cytoskeletons was obtained and quantitatively analyzed by mass spectrometry. We identified 623 proteins classified into 18 functional groups, including 30 IMC proteins, 34 cytoskeleton proteins, and 14 uncharacterized proteins. A comprehensive bioinformatic analysis was conducted to assess protein abundance (fmol), antigenicity, accessibility, interactome, and homology, with the aim of identifying immunogenic targets. Among the top vaccine candidates were -GRA12, IMC1, ROP8, and -IMC4, with ROP8 emerging as the most promising based on epitope prediction. Data are available via ProteomeXchange with identifier PXD063409. SIGNIFICANCE: Toxoplasma gondii represents one of the most virulent and successful parasites in human and veterinary pathogenesis. Since T. gondii is a highly dynamic parasite that depends on its cytoskeleton to invade and disseminate through tissues, knowledge of its cytoskeleton composition is essential for understanding the biological mechanisms involved in parasite-host interactions and for the design of pharmaceutical and vaccination strategies. Quantitative proteomic analysis of the T. gondii cytoskeleton provided new and extensive information on its composition and, through bioinformatics approaches, allowed us to suggest several candidate molecules for future immunoprotective design.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jprot.2025.105509DOI Listing

Publication Analysis

Top Keywords

toxoplasma gondii
12
gondii cytoskeleton
12
quantitative proteomic
8
proteomic analysis
8
cytoskeleton
6
gondii
5
proteins
5
analysis toxoplasma
4
cytoskeleton bioinformatic
4
bioinformatic identification
4

Similar Publications

Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.

View Article and Find Full Text PDF

Apicomplexan AP2 (ApiAP2) family proteins are a family of transcription factors that are known to regulate gene expression in apicomplexan pathogens, including . In this study, we focused on TgAP2X-7, a member of the APiAP2 family that is predicted to be essential for fitness. Endogenous tagging of TgAP2X-7 followed by immunofluorescence analysis revealed that it's a cell cycle-regulated nuclear protein with peak expression in the G1 phase.

View Article and Find Full Text PDF