Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Benign prostatic hyperplasia (BPH) is an age-related condition characterized by progressive prostate enlargement driven in part by the accumulation of senescent epithelial cells and their pro-inflammatory secretome. Using human single-cell RNA sequencing and laser capture microdissection, we identified C-X-C Motif Chemokine Ligand 13 (CXCL13) as a key chemokine secreted by senescent prostate epithelial cells. CXCL13 recruits CD4 T cells via the C-X-C Chemokine Receptor Type 5 (CXCR5) receptor, facilitating immune recognition through human leukocyte antigen-DR isotype (HLA-DR) and promoting senescent cell clearance. Functional assays revealed that CD4 cytotoxic T lymphocytes (CTLs) mediate this clearance, while regulatory T cells (Tregs) suppress it, forming a functional dichotomy. Immunohistochemistry, transwell migration, and co-culture assays confirmed this CXCL13-CXCR5-HLA-DR axis. In a testosterone-induced BPH mouse model, CXCL13 treatment enhanced CD4 T cell infiltration and reduced epithelial senescence, while CD4 T cell depletion reversed these effects. Single-cell transcriptomics in mice further validated increased CXCL13 expression and CD4 T cell engagement. These findings uncover a critical immune surveillance mechanism in BPH and suggest that targeting the CXCL13-CD4 T cell axis may offer a novel therapeutic strategy for age-related prostate enlargement.

Download full-text PDF

Source
http://dx.doi.org/10.1111/acel.70180DOI Listing

Publication Analysis

Top Keywords

cd4 cell
12
cd4 cells
8
senescent prostate
8
benign prostatic
8
prostatic hyperplasia
8
prostate enlargement
8
epithelial cells
8
cd4
6
cells
5
cell
5

Similar Publications

Lymphotoxin β receptor (LTβR/TNFRSF3) signaling plays a crucial role in immune defense. Notably, LTβR-deficient (LTβR) mice exhibit severe defects in innate and adaptive immunity against various pathogens and succumb to infection. Here, we investigated the bone marrow (BM) and peritoneal cavity (PerC) compartments of LTβR mice during infection, demonstrating perturbed B-cell and T-cell subpopulations in the absence of LTβR signaling.

View Article and Find Full Text PDF

Host-pathogen interactions involve two critical strategies: resistance, whereby hosts clear invading microbes, and tolerance, whereby hosts carry high pathogen burden asymptomatically. Here, we investigate mechanisms by which Salmonella-superspreader (SSP) hosts maintain an asymptomatic state during chronic infection. We found that regulatory T cells (Tregs) are essential for this disease-tolerant state, limiting intestinal immunopathology and enabling SSP hosts to thrive, while facilitating Salmonella transmission.

View Article and Find Full Text PDF

Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.

Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.

View Article and Find Full Text PDF

Chimeric antigen receptor T-cell (CAR-T) therapies have demonstrated clinical efficacy in treating haematological malignancies, resulting in multiple regulatory approvals. However, there is a need for robust manufacturing platforms and the use of GMP-aligned reagents to meet the clinical and commercial demands. This study investigates the impact of serum/xeno-free medium (SXFM) and cytokine supplementation on CAR-T cell production in static and agitated culture systems, using 24-well plate G-Rex vessels and 500 mL stirred tank bioreactors (STRs), respectively.

View Article and Find Full Text PDF

Memory T cells, a sizable compartment of the mature immune system, enable enhanced responses upon re-infection with the same pathogen. We have recently shown that virus-experienced innate acting T (T) cells can modulate infectious or autoimmune diseases through TCR-independent IFN-γ production. However, how these cells arise remains unclear.

View Article and Find Full Text PDF