Alkoxy functionalized covalent organic frameworks for efficient oil/water separation.

J Colloid Interface Sci

Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China. Electronic address:

Published: December 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The massive discharge of oily wastewater and the frequent occurrence of oil spills have posed serious threat to human. Hence, it is important to develop functional materials and related methods to achieve efficient oil/water separation. Herein, a new superhydrophobic COF (named SCOF) was designed and successfully synthesized with functional alkoxy side chains at room temperature for the first time and was then applied to oil/water separation. By loading SCOF onto the fabric, the prepared superhydrophobic Fabric@SCOF membrane could effectively separate different oil/water mixtures, and the separation efficiency was higher than 99 %. Noteworthy, when separating immiscible CHCl/water mixture, the maximum oil flux was 63,129 L m h and the separation efficiency reached 99.8 %. To the best of our knowledge, this was the highest oil flux of superhydrophobic COF-based membrane prepared on the fabric substrate for the separation of immiscible oil/water mixture only in gravity. By loading SCOF onto porous melamine sponge, the fabricated Sponge@SCOF could adsorb different oils, and the adsorption capacity for CCl could reach 151 g/g. This work provides insights for the design and synthesis of novel functional COFs, and broadens the application of COF-based superhydrophobic composite in oil/water separation, which is of great significance for oily wastewater treatment and environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2025.138527DOI Listing

Publication Analysis

Top Keywords

oil/water separation
16
efficient oil/water
8
oily wastewater
8
loading scof
8
separation efficiency
8
oil flux
8
separation
7
oil/water
6
alkoxy functionalized
4
functionalized covalent
4

Similar Publications

In this study, a silicon carbide (SiC) mixed-matrix membrane for oil-water separation was successfully fabricated within the nanofiltration range. Silicon carbide was synthesized using rice husk ash (RHA), an agricultural waste material, combined with polydimethylsiloxane (PDMS) and subsequently incorporated into a mixed matrix membrane for oil-water separation. Polysulfone (PSF) and polyvinylpyrrolidone (PVP) were employed as polymer supports for fabricating the SiC-based mixed matrix membrane, which was tested in a dead-end filtration setup.

View Article and Find Full Text PDF

Aerogels are widely used in environmental remediation, but their application is hindered by brittleness, limited oil absorption and poor separation of viscous crude oil. In this study, a multifunctional superhydrophobic aerogel with electrothermal and photothermal effects was prepared from bacterial cellulose (BC), methyltrimethoxysilane (MTMS), and hydroxylated carbon nanotubes (HCNT) by soft-hard synergistic and directed freezing. The prepared aerogel exhibited an oriented layered porous structure with excellent compressibility and oil retention capacity.

View Article and Find Full Text PDF

The impact of different surfactants on hydrate formation varies, and exploring hydrate growth characteristics is crucial for advancing the industrial application of oil and gas transportation. This study employed a microscope to investigate the hydrate formation rate and the morphology and formation process of the hydrate along the wall. It also visually demonstrated the hydrate formation process on the wall within an oil-water system and the migration patterns of different liquid phases inside the hydrate, leading to the characteristic of various wall hydrate growth modes.

View Article and Find Full Text PDF

Although intelligent superwettability materials with tunable wettability have been extensively studied in oil-water separation, they still exhibit several limitations including singular dimension of response, nondurable surface modification, and inadequate on-demand separation capabilities. Herein, we propose an ingenious strategy that combines pH-responsive polymer and shape memory material to achieve intelligent dual-regulation of surface wettability and pore size. A porous double-regulated foam (DRF) is obtained by uniformly mixing epoxy resin with PMMA--PDEAEMA solution and one-piece curing it through salt template method.

View Article and Find Full Text PDF

Oily wastewater, such as from oil spills, chemical leaks, and organic pollutants, has become a serious environmental pollution problem. Superhydrophobic cotton fabric has attracted extensive research interest as an ideal material for handling oily wastewater, but this solution is difficult to balance efficient oil-water separation and removal of organic pollutants in complex oily wastewater. Therefore, the combination of superwetting and photocatalysis is expected to provide an efficient and simple solution.

View Article and Find Full Text PDF