A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Artificial Intelligence-Driven Drug Toxicity Prediction: Advances, Challenges, and Future Directions. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Drug toxicity prediction plays a crucial role in the drug research and development process, ensuring clinical drug safety. However, traditional methods are hampered by high cost, low throughput, and uncertainty of cross-species extrapolation, which has become a key bottleneck restricting the efficiency of new drug research and development. The breakthrough development of Artificial Intelligence (AI) technology, especially the application of deep learning and multimodal data fusion strategy, is reshaping the scientific paradigm of drug toxicology assessment. In this review, we focus on the application of AI in the field of drug toxicity prediction and systematically summarize the relevant literature and development status globally in the past years. The application of various toxicity databases in the prediction was elaborated in detail, and the research results and methods for the prediction of different toxicity endpoints were analyzed in depth, including acute toxicity, carcinogenicity, organ-specific toxicity, etc. Furthermore, this paper discusses the application progress of AI technologies (e.g., machine learning and deep learning model) in drug toxicity prediction, analyzes their advantages and challenges, and outlines the future development direction. It aims to provide a comprehensive and in-depth theoretical framework and actionable technical strategies for toxicity prediction in drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12299075PMC
http://dx.doi.org/10.3390/toxics13070525DOI Listing

Publication Analysis

Top Keywords

toxicity prediction
20
drug toxicity
16
drug development
12
drug
9
toxicity
9
deep learning
8
prediction
7
development
6
artificial intelligence-driven
4
intelligence-driven drug
4

Similar Publications