98%
921
2 minutes
20
Study Design: The advent of the Matrix Wave System (Depuy-Synthes)-a bone-anchored Mandibulo-Maxillary Fixation (MMF) System-merits closer consideration because of its peculiarities.
Objective: This study alludes to two preliminary stages in the evolution of the Matrix Wave MMF System and details its technical and functional features.
Results: The Matrix Wave System (MWS) is characterized by a smoothed square-shaped Titanium rod profile with a flexible undulating geometry distinct from the flat plate framework in Erich arch bars. Single MWS segments are Omega-shaped and carry a tie-up cleat for interarch linkage to the opposite jaw. The ends at the throughs of each MWS segment are equipped with threaded screw holes to receive locking screws for attachment to underlying mandibular or maxillary bone. An MWS can be partitioned into segments of various length from single Omega-shaped elements over incremental chains of interconnected units up to a horseshoe-shaped bracing of the dental arches. The sinus wave design of each segment allows for stretch, compression and torque movements. So, the entire MWS device can conform to distinctive spatial anatomic relationships. Displaced fragments can be reduced by in-situ-bending of the screw-fixated MWS/Omega segments to obtain accurate realignment of the jaw fragments for the best possible occlusion.
Conclusion: The Matrix Wave MMF System is an easy-to-apply modular MMF system that can be assembled according to individual demands. Its versatility allows to address most facial fracture scenarios in adults. The option of "omnidirectional" in-situ-bending provides a distinctive feature not found in alternate MMF solutions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12286117 | PMC |
http://dx.doi.org/10.3390/cmtr18030032 | DOI Listing |
J Biomech
September 2025
Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland. Electronic address:
Alterations in skeletal muscle morphology and composition are critical factors in cerebral palsy (CP), including changes in passive stiffness and in belly and fascicle lengths. In this study, we quantified the relative contributions of muscle and tendon to passive stiffness across the ankle range of motion in individuals with CP and typically developing (TD) peers. We also investigated morphological factors underlying increased muscle stiffness.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Mechanical & Industrial Engineering, Louisiana State University, Baton Rouge, Louisiana 70803, United States.
With the rapid advancement in autonomous vehicles, 5G and future 6G communications, medical imaging, spacecraft, and stealth fighter jets, the frequency range of electromagnetic waves continues to expand, making electromagnetic interference (EMI) shielding a critical challenge for ensuring the safe operation of equipment. Although some existing EMI shielding materials offer lightweight construction, high strength, and effective shielding, they struggle to efficiently absorb broadband electromagnetic waves and mitigate dimensional instability and thermal stress caused by temperature fluctuations. These limitations significantly reduce their service life and restrict their practical applications.
View Article and Find Full Text PDFRSC Adv
August 2025
College of Materials Science and Engineering, Jilin University of Chemical Technology Jilin 132022 PR China
To contribute to the circular and sustainable economy framework, waste tire rubber reclamation by extracting carbon black through pyrolysis and heat treatment and then ingeniously designing it as an electromagnetic wave absorbing (EWA) material is proposed herein. The results showed that the pyrolysis-recycled carbon black (RCB) was heterogeneous with multiple interfaces, making it suitable for EWA application. The RCB was processed at 500 °C-1000 °C to study the changes in the composite and microstructure as well as the EWA properties.
View Article and Find Full Text PDFAcute Crit Care
August 2025
Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand.
Background: Intracranial pressure (ICP) waveform analysis provides critical insights into brain compliance and can aid in the early detection of neurological deterioration. Deep learning (DL) has recently emerged as an effective approach for analyzing complex medical signals and imaging data. The aim of the present research was to develop a DL-based model for detecting ICP waveforms indicative of poor brain compliance.
View Article and Find Full Text PDFMed Phys
September 2025
Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA.
Background: In clinical radiation therapy (RT), accurately quantifying the delivered radiation dose to the targeted tumors and surrounding tissues is essential for evaluating treatment outcomes. Ionizing radiation acoustic imaging (iRAI), a novel passive and non-invasive imaging technique, has the potential to provide real-time in vivo radiation dose mapping during RT. However, current iRAI technology does not account for spatial variations in the detection sensitivity of the ultrasound transducer used to capture the iRAI signals, leading to significant errors in dose mapping.
View Article and Find Full Text PDF