98%
921
2 minutes
20
Background: Genomic imprinting is required for normal development, and abnormal methylation of differentially methylated regions (iDMRs) controlling the parent of origin-dependent expression of the imprinted genes has been found in congenital disorders affecting growth, metabolism, neurobehavior, and in cancer. In most of these cases the cause of the imprinting abnormalities is unknown. Also, these studies have generally been performed on a limited number of CpGs, and a systematic investigation of iDMR methylation in the general population is lacking.
Results: By analysing a vast number of either in-house generated or online available whole-genome methylation array datasets of unaffected individuals, and patients with complex and rare disorders, we determined the most common iDMR methylation profiles in a large population and identified many genetic and non-genetic factors contributing to their variability in blood DNA. We found that methylation variability was not homogeneous within the iDMRs and that the CpGs closer to the ZFP57 binding sites are less susceptible to methylation changes. We demonstrated the methylation polymorphism of three iDMRs and the atypical behaviour of several others, and reported the association of 25 disease- and 47 non-disease-complex traits as well as 15 Mendelian and chromosomal disorders with iDMR methylation changes. The most significantly associated complex traits included ageing, intracytoplasmic sperm injection, African versus European ancestry, female sex, pre- and postnatal exposure to pollutants and blood cell type compositions, while the associated genetic diseases included Down syndrome and the developmental disorders with molecular defects in the DNA methyltransferases DNMT1 and DNMT3B, H3K36 methyltransferase SETD2, chromatin remodelers SRCAP and SMARCA4 and transcription factor ADNP.
Conclusions: These findings identify several genetic and non-genetic factors including new genes associated with genomic imprinting maintenance in humans, which may have a role in the aetiology of the diseases with imprinting abnormalities and have clear implications in molecular diagnostics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12288321 | PMC |
http://dx.doi.org/10.1186/s13072-025-00612-7 | DOI Listing |
Nature
September 2025
Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
Bacteriophages are the most abundant entities on earth and exhibit vast genetic and phenotypic diversity. Exploitation of this largely unexplored molecular space requires identification and functional characterization of genes that act at the phage-host interface. So far, this has been restricted to few model phage-host systems that are amenable to genetic manipulation.
View Article and Find Full Text PDFMol Genet Genomic Med
September 2025
Research Centre for Medical Genetics, Moscow, Russia.
Background: Developmental and epileptic encephalopathies (DEEs) comprise a diverse range of disorders that can arise from both genetic and non-genetic causes. Genetic DEEs are linked to pathogenic variants in various genes with different molecular functions. The wide clinical and genetic variability found in DEEs poses a considerable challenge for accurate diagnosis even with the use of comprehensive diagnostic approaches such as whole genome sequencing (WGS).
View Article and Find Full Text PDFExp Hematol
September 2025
Tsuruoka Metabolomics Laboratory, National Cancer Center, Tsuruoka, Yamagata 997-0052, Japan. Electronic address:
Gene rearrangements of the human MLL gene (also known as KMT2A) generate multiple fusion oncoproteins which cause leukemia with poor prognosis. MLL is an epigenetic regulator that reads and writes epigenetic information and has an evolutionarily conserved role maintaining expression of Homeotic (HOX) genes during embryonic development. Most MLL gene rearrangements found in leukemia generate a constitutively active version of the wild-type protein, which causes overexpression of HOX and other genes and leukemic transformation of normal hematopoietic progenitors.
View Article and Find Full Text PDFCurr Gene Ther
August 2025
State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Neurosurgery, Peking University Third Hospital, Peking University, Beijing 100191, China.
Cerebral Cavernous Malformations (CCMs) are vascular anomalies in the central nervous system that arise from both genetic and non-genetic factors, and can cause hemorrhage, seizures, and neurological deficits. Approximately 80% of CCMs are sporadic, while 20% are Familial (FCCMs), an autosomal dominant, monogenic disorder characterized by multiple lesions and severe clinical manifestations. Over the past three decades, linkage analyses have identified KRIT1/CCM1, MGC4607/CCM2, and PDCD10/CCM3 as major pathogenic genes in FCCMs.
View Article and Find Full Text PDFJ Clin Pharmacol
September 2025
School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP, Brazil.
Endoxifen is the most active metabolite of tamoxifen and plays a central role in its therapeutic efficacy. However, significant interindividual variability in endoxifen plasma concentrations, driven by both genetic and non-genetic factors, may result in subtherapeutic exposure for a substantial subset of patients. This study evaluated the influence of CYP2D6 phenotype and age on endoxifen steady-state concentrations and explored the clinical utility of therapeutic drug monitoring (TDM) to guide tamoxifen therapy.
View Article and Find Full Text PDF