98%
921
2 minutes
20
The emergence of complexity during self-assembly of simple molecular building blocks is an important aspect in the synthesis of nanoarchitectures from supramolecular functional units. In particular, two-dimensional nanostructures are important from the point-of-view of technological applications. Here, a remarkably complex on surface network is observed to form spontaneously from a single molecular module (porphyrin) having multiple site-specific conformations. The interplay of different physicochemical interactions at the surface contributes to the site-specific symmetry breaking of the porphyrin conformation, and was investigated at different substrates. Molecular conformational flexure, relocation in the corrugated surface potential, interactions with surface state electrons, and last but not least mutual intermolecular binding by hydrogen bonding at different elevations above the substrate are critical elements. We discuss the possibility of surfaces and interfaces causing quasidegeneracy of molecular configurations in supramolecular self-assembly, and the adsorbate-adsorbent interface as the driver for this system to behave counterintuitively to equilibrium thermodynamics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12290036 | PMC |
http://dx.doi.org/10.1038/s42004-025-01607-x | DOI Listing |
ACS Biomater Sci Eng
September 2025
Materials Engineering, McGill university, Montreal H3A0C5, Canada.
Transcutaneous devices such as dental implants frequently fail due to infections at their interfaces with epithelial tissues. These infections are facilitated by the lack of integration between the devices and the surrounding soft tissues. This study aims to improve epithelial integration through surface modification of a transcutaneous implant material (polyetheretherketone (PEEK)).
View Article and Find Full Text PDFJ Phys Chem B
September 2025
Department of Physics, Division of Nano and Biophysics, Chalmers University of Technology, Fysikgränd 3, Göteborg 41296, Sweden.
The detection of biological nanoparticles (NPs), such as viruses and extracellular vesicles (EVs), plays a critical role in medical diagnostics. However, these particles are optically faint, making microscopic detection in complex solutions challenging. Recent advancements have demonstrated that distinguishing between metallic and dielectric signals with twilight off-axis holographic microscopy makes it possible to differentiate between metal and biological NPs and to quantify complexes formed from metal and biological NPs binding together.
View Article and Find Full Text PDFPLoS One
September 2025
Department of Microbiology and Parasitology, Faculty of Biology - Aquatic One Health Research Center (iARCUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
Uropathogenic Escherichia coli (UPEC) are among the first pathogens to colonise in catheter and non-catheter-associated urinary tract infections. However, these infections are often polymicrobial, resulting in multi-species infections that persist by forming biofilms. Living within these highly antimicrobial tolerant communities, bacteria can establish intra- and inter-specific interactions, including quorum sensing (QS)-mediated signalling mechanisms, which play a key role in biofilm establishment and maturation.
View Article and Find Full Text PDFSports Biomech
September 2025
Motion Analysis and Integrative Neurophysiology Lab, College of Health and Human Services, The University of Toledo, Toledo, OH, USA.
Running over 'softer' surfaces is thought to lower the magnitude of impact forces. Current research is limited and inconclusive regarding the influence that transitioning between surfaces has on impact forces. Adult runners ( = 18) ran outdoors over a 50 m pathway that was half concrete and half grass at a self-selected speed.
View Article and Find Full Text PDFACS Nano
September 2025
Frontiers Science Center for Transformative Molecules, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Dynamic micro/nano-structured surfaces play pivotal roles in biological systems and engineering applications. Despite considerable progress has been made in fabricating precisely ordered architectures, achieving controlled motion in top-down fabricated structures remain a formidable challenge. Here, we introduce an advanced dynamic micron-nano optical platform featuring hierarchical microscale wrinkles integrated with ordered nanoscale arrays.
View Article and Find Full Text PDF