A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Entropy-Driven Structural Evolution in Ceramic Oxides. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

High-entropy ceramics, with five or more elements randomly occupying the same cation crystallographic sites, offer vast compositional diversity and unique properties for material design and applications. However, for many dissimilar elements, entropic stabilization cannot overcome the enthalpic barrier to cation substitution. As a result, most high-entropy ceramics incorporate only a few similar elements, limiting the in-depth exploration of the effect of entropy on ceramic properties. Here, we first use density functional theory to model fluorite crystal structures composed of 1-10 elements and then experimentally present practical fluorite oxide nanostructures containing 1, 3, 8, and 15 metals, as well as a record-breaking 25-element high-entropy ceramic incorporating a diverse palette of rare-earth, transition, alkaline, -block, and noble metals. As entropy increases, structural and configurational disorder in the solid solution rises, altering structural features such as lattice distortion, crystallinity, homogeneity, defect density, and thermal stability. This research provides new insights and understanding of the role of entropy in stabilizing compositionally complex ceramics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.5c06254DOI Listing

Publication Analysis

Top Keywords

high-entropy ceramics
8
entropy-driven structural
4
structural evolution
4
evolution ceramic
4
ceramic oxides
4
oxides high-entropy
4
elements
4
ceramics elements
4
elements randomly
4
randomly occupying
4

Similar Publications