A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep-Learning Model for Real-Time Prediction of Recurrence in Early-Stage Non-Small Cell Lung Cancer: A Multimodal Approach (RADAR CARE Study). | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The surveillance protocol for early-stage non-small cell lung cancer (NSCLC) is not contingent upon individualized risk factors for recurrence. This study aimed to use comprehensive data from clinical practice to develop a deep-learning model for practical longitudinal monitoring.

Methods: A multimodal deep-learning model with transformers was developed for real-time recurrence prediction using baseline clinical, pathological, and molecular data with longitudinal laboratory and radiologic data collected during surveillance. Patients with NSCLC (stage I to III) who underwent surgery with curative intent between January 2008 and September 2022 were included. The primary outcome was predicting recurrence within 1 year after the monitoring point. This study demonstrates the timely provision of risk scores (RADAR score) and determined thresholds and the corresponding AUC.

Results: A total of 14,177 patients were enrolled (10,262 with stage I, 2,380 with stage II, and 1,703 with stage III). The model incorporated 64 clinical-pathological-molecular factors at baseline, along with longitudinal laboratory and computed tomography imaging interpretation data. The mean baseline RADAR score was 0.324 (standard deviation [SD], 0.256) in stage I, 0.660 (SD, 0.210) in stage II, and 0.824 (SD, 0.140) in stage III. The AUC for predicting relapse within 1 year of the monitoring point was 0.854 across all stages, with a sensitivity of 86.0% and a specificity of 71.3% (AUC = 0.872 in stage I, AUC = 0.737 in stage II, and AUC = 0.724 in stage III).

Conclusion: This pilot study introduces a deep-learning model that uses multimodal data from routine clinical practice to predict relapses in early-stage NSCLC. It demonstrates the timely provision of RADAR risk scores to clinicians for recurrence prediction, potentially guiding risk-adapted surveillance strategies and aggressive adjuvant systemic treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12309513PMC
http://dx.doi.org/10.1200/PO-25-00172DOI Listing

Publication Analysis

Top Keywords

deep-learning model
16
stage iii
12
stage
10
early-stage non-small
8
non-small cell
8
cell lung
8
lung cancer
8
clinical practice
8
recurrence prediction
8
longitudinal laboratory
8

Similar Publications