98%
921
2 minutes
20
Photonic crystal (PhC) supports Bloch resonances that confine electromagnetic energy within the subwavelength thickness and enable polarization modulation through their intrinsic mode states. If a PhC generates chiral resonances, then it can selectively enhance or suppress specific circular polarizations, making it ideal for chiral optics. Here, we devise a design strategy to realize chiral resonant modes with large angular divergence and tunable quality factors ( factors) by introducing planar structural perturbations. The factor exhibits an inverse-square dependence on perturbation strength, consistent with the behavior of quasi-bound states in the continuum. Theoretical and experimental results demonstrate chiral modes with high circular dichroism, large separation angles, and high- factors. We further couple 2D excitons to these resonant modes, achieving spatially separated chiral emission. Using Brillouin zone folding, we translate bound modes at high-symmetry points into the radiative region, suggesting a strategy to control polarization, group velocity, and topology in photonic systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12285695 | PMC |
http://dx.doi.org/10.1126/sciadv.adu4875 | DOI Listing |
J Phys Chem Lett
September 2025
State Key Laboratory of Analytical Chemistry for Life Sciences, Engineering Research Center of Photoresist Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Circularly polarized room-temperature phosphorescent (CP-RTP) materials have been attracting great attention due to their potential applications in anticounterfeiting. In this study, we designed and synthesized a host-guest copolymer () with strong phosphorescence emission and a long emission lifetime using a self-doping strategy. The co-assembled liquid crystal polymer networks / doped with demonstrated a stronger RTP emission and longer lifetime (τ = 148 ms).
View Article and Find Full Text PDFOrg Lett
September 2025
Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
Novel chiral emitters are constructed using a "four-in-one" strategy through attachment of an octahydro-binaphthol unit onto a boron/nitrogen multiple resonance skeleton. They manifest ultrapure green emission peaking at 511 nm, a full width at half maximum of 22 nm, a Commission Internationale de l'Eclairage coordinate of 0.73, a small Δ of 0.
View Article and Find Full Text PDFInorg Chem Front
September 2025
Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 Denmark
We herein demonstrate the synthesis of a pair of enantiomerically pure Yb complexes by post-functionalisation of the parent Yb complex condensation with an enantiomerically pure chiral amine. The enantiomeric pair is structurally characterised by single crystal and powder X-ray diffraction, showing that it crystalises in the 222 Sohncke space group with Flack parameters close to zero, which confirms their enantiopurity. Circular Dichroism (CD) and absorption spectroscopies in the NIR reveal sharp F → F f-f transitions, with values up to 0.
View Article and Find Full Text PDFNanophotonics
August 2025
Departament de Física de la Matèria Condensada, Universitat de Barcelona, 08028 Barcelona, Spain.
We present a systematic investigation of the optical response to circularly polarized illumination in twisted stacked plasmonic nanostructures. The system consists in two identical, parallel gold triskelia, centrally aligned and rotated at a certain angle relative to each other. Sample fabrication was accomplished through a novel multilevel high-resolution electron beam lithography.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA.
We describe the preparation, conformational dynamics, and stereoselective recognition characteristics of water-soluble pillar[6]arenes pS-2 and pR-2. These two novel and diastereomeric cavitands comprise a 2,5-bis(ethoxy)pillar[6]arene core with one of six phenylene ring conjugated to two hexaanionic dendrons. Each dendron includes an (S)-glutamic acid amidated with two tris-carboxylic Behera's amines.
View Article and Find Full Text PDF