Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background And Aim: Willd. (Quinoa) is a nutrient-dense pseudocereal with potential therapeutic benefits for metabolic disorders, including diabetes mellitus. However, the safety and efficacy of varying concentrations of dietary quinoa on metabolic and histological parameters in diabetic and non-diabetic models remain underexplored. This study aimed to evaluate the short-term effects of different quinoa supplementation levels (0%, 20%, 40%, and 80%) on glycemic control, lipid metabolism, hepatic and renal function, hematological indices, and organ histopathology in normal and streptozotocin (STZ)-induced diabetic rats.

Materials And Methods: Forty-eight adult male Wistar rats were randomly assigned to eight groups (n = 6 each) based on diabetic status and dietary quinoa concentration. Diabetes was induced using low-dose STZ (25 mg/kg). Animals received the respective quinoa-enriched diets for 30 days. Blood glucose, glycated hemoglobin, lipid profiles, liver/kidney function markers, and complete blood counts were analyzed. Histological assessments of liver and kidney tissues were also performed.

Results: Diabetic rats receiving 40% and 80% quinoa diets exhibited significant reductions in fasting blood glucose (p < 0.05) and alanine transaminase levels (p < 0.01), indicating improved glycemic and hepatic function. Very low-density lipoprotein cholesterol decreased significantly in all quinoa-fed diabetic groups, and high-density lipoprotein cholesterol increased notably in the 20% quinoa group (p < 0.05). Normal rats showed no adverse changes across biochemical or hematological indices. Histological analysis confirmed the absence of morphological abnormalities in hepatic and renal tissues in all groups.

Conclusion: Short-term dietary quinoa supplementation, particularly at 40% and 80% inclusion levels, effectively improves glycemic and lipid profiles and mitigates liver enzyme elevations in diabetic rats without compromising health parameters in normal controls. The findings support quinoa's potential as a safe dietary adjunct in managing diabetes-related metabolic dysfunctions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269916PMC
http://dx.doi.org/10.14202/vetworld.2025.1715-1724DOI Listing

Publication Analysis

Top Keywords

diabetic rats
12
dietary quinoa
12
40% 80%
12
quinoa
8
quinoa supplementation
8
hepatic renal
8
hematological indices
8
blood glucose
8
lipid profiles
8
lipoprotein cholesterol
8

Similar Publications

Diabetic cardiomyopathy (DCM) is a progressive heart disorder associated with diabetes mellitus, leading to structural and functional cardiac abnormalities. The mechanisms responsible include renin-angiotensin-aldosterone (RAAS) activation, inflammation, apoptosis, and metabolic disturbances. Despite well-established epidemiological links, treatments for DCM are elusive.

View Article and Find Full Text PDF

Intracellular trafficking of secretory and membrane proteins from the endoplasmic reticulum (ER) to the cell surface, via the secretory pathway, is crucial to the differentiated function of epithelial tissues. In the thyroid gland, a prerequisite for such trafficking is proper protein folding in the ER, assisted by an array of ER molecular chaperones. One of the most abundant of these chaperones, Glucose-Regulated-Protein-170 (GRP170, encoded by Hyou1), is a noncanonical hsp70-like family member.

View Article and Find Full Text PDF

Exploring the hypoglycemic potential of HuGLP-1-loaded bilosomes in controlling type 2 diabetes mellitus.

Ther Deliv

September 2025

Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Ahmedabad (NIPER-A), An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Gandhinagar, India.

Background: Type 2 diabetes mellitus (T2DM) is the most devastating disease and it necessitates therapeutic intervention for its effective management. Human Glucagon-like peptide-1 (HuGLP-1) is the potential candidate in the treatment of T2DM; however, it limits its utilization owing to its solubility and stability issues.

Aims: The current investigation aims to develop HuGLP-1-loaded bilosomes as a novel strategy for managing T2DM.

View Article and Find Full Text PDF

Purpose: The present study aimed to fabricate microneedles (MNs) for transdermal delivery of insulin. Chitosan-conjugated carboxy phenyl boronic acid polymer was synthesized and characterized to load insulin in the form of nanoparticles.

Methods: Optimized insulin nanoparticles (ILN-NPs) were loaded into MN arrays by micromolding, and the resulting MN patches were characterized by scanning electron microscopy (SEM) and mechanical failure tests.

View Article and Find Full Text PDF

One of the most prevalent metabolic diseases in recent years, type 2 diabetes is now one of the top causes of death globally and a significant risk factor for cardiovascular diseases. Therefore, the goal of this study is to investigate the impact of HIIT exercises on the levels of specific proteins associated with mitochondrial biogenesis and apoptosis in the heart tissue of male Wistar rats with type 2 diabetes. Animals in diabetic groups were given a high-fat diet and an intraperitoneal injection of STZ to cause diabetes.

View Article and Find Full Text PDF