98%
921
2 minutes
20
Aims: To develop a deep learning model that: (i) utilizes transthoracic echocardiography (TTE) clips to detect left ventricular (LV) enlargement without being provided information regarding a patient's sex and body size; and (ii) can be accurately applied to clips acquired using either standard comprehensive TTE or handheld cardiac ultrasound (HCU).
Methods And Results: Using retrospective TTE data (training: 8722 patients; internal validation: 468 patients), we developed a deep learning model that estimates a patient's end-diastolic LV volume (indexed to body surface area and normalized across the sexes), and then thresholds this estimate to perform the following classifications: (1) normally sized LV vs. ≥ mild LV enlargement; (2) normal/mildly enlarged LV vs. ≥ moderate LV enlargement. For retrospective datasets, the model showed strong performance in TTE across three geographically distinct locations (Minnesota and Wisconsin: 1082 patients, AUC = 0.925 and 0.953 for classifications 1 and 2, respectively; Arizona: 1475 patients, AUC = 0.935 and 0.969; and Florida: 1481 patients, AUC = 0.934 and 0.970). Additionally, performance was strong for both TTE and HCU clips collected from a prospective cohort of 410 patients who underwent HCU immediately following TTE (TTE: AUC = 0.925 and 0.971; HCU: AUC = 0.874 and 0.902, for classifications 1 and 2, respectively).
Conclusion: An automated deep learning model applied to TTE or HCU images accurately categorizes LV volumes. These results lay a foundation for future work aimed at optimizing clinical outcomes for heart failure patients by enabling early detection of LV enlargement across various point-of-care settings.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12275095 | PMC |
http://dx.doi.org/10.1093/ehjimp/qyaf049 | DOI Listing |
BMC Oral Health
September 2025
Oral and Maxillofacial Radiology Department, Cairo university, Cairo, Egypt.
Aim: The purpose of this study was to assess the accuracy of a customized deep learning model based on CNN and U-Net for detecting and segmenting the second mesiobuccal canal (MB2) of maxillary first molar teeth on cone beam computed tomography (CBCT) scans.
Methodology: CBCT scans of 37 patients were imported into 3D slicer software to crop and segment the canals of the mesiobuccal (MB) root of the maxillary first molar. The annotated data were divided into two groups: 80% for training and validation and 20% for testing.
BMC Psychiatry
September 2025
Department of Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
Obsessive-compulsive disorder (OCD) is a chronic and disabling condition affecting approximately 3.5% of the global population, with diagnosis on average delayed by 7.1 years or often confounded with other psychiatric disorders.
View Article and Find Full Text PDFBMC Musculoskelet Disord
September 2025
Department of Clinical Sciences at Danderyds Hospital, Department of Orthopedic Surgery, Karolinska Institutet, Stockholm, 182 88, Sweden.
Background: This study evaluates the accuracy of an Artificial Intelligence (AI) system, specifically a convolutional neural network (CNN), in classifying elbow fractures using the detailed 2018 AO/OTA fracture classification system.
Methods: A retrospective analysis of 5,367 radiograph exams visualizing the elbow from adult patients (2002-2016) was conducted using a deep neural network. Radiographs were manually categorized according to the 2018 AO/OTA system by orthopedic surgeons.
J Cancer Res Clin Oncol
September 2025
Department of Surgery, Mannheim School of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
Purpose: The study aims to compare the treatment recommendations generated by four leading large language models (LLMs) with those from 21 sarcoma centers' multidisciplinary tumor boards (MTBs) of the sarcoma ring trial in managing complex soft tissue sarcoma (STS) cases.
Methods: We simulated STS-MTBs using four LLMs-Llama 3.2-vison: 90b, Claude 3.
Sci Rep
September 2025
Fukushima Renewable Energy Institute, Koriyama, Japan.
Ultra-fast charging stations (UFCS) present a significant challenge due to their high power demand and reliance on grid electricity. This paper proposes an optimization framework that integrates deep learning-based solar forecasting with a Genetic Algorithm (GA) for optimal sizing of photovoltaic (PV) and battery energy storage systems (BESS). A Gated Recurrent Unit (GRU) model is employed to forecast PV output, while the GA maximizes the Net Present Value (NPV) by selecting optimal PV and BESS sizes tailored to weekday and weekend demand profiles.
View Article and Find Full Text PDF