98%
921
2 minutes
20
Solar thermal conversion technology, as an emerging solar energy harvesting strategy, has attracted much attention in many application areas. In this field, plasmonic materials have a strong application potential owing to their localized surface plasmon resonance. The use of plasmonic materials with extensive solar energy absorption, combined with their practical applications, provides new routes for realizing efficient photothermal conversion in multidisciplinary applications. In this review, we discuss the photothermal conversion of different nano/microstructures based on various plasmonic systems for hydrogen production, desalination, and bacterial inactivation applications, including the design of plasmonic systems coupled with a variety of materials for enhanced photocatalysis, localized heating, and salt resistance. Finally, new design concepts and current advances for scalable wastewater purification as well as bacterial and hydrogen detection are discussed. The aim of this review is to summarize the latest developments in the application of plasmonic materials in solar photothermal conversion technologies, as a way to stimulate the transition of fundamental research to practical industrial applications, facilitate the effective use of new energy sources, and provide new research strategies for the sustainable production of energy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12268409 | PMC |
http://dx.doi.org/10.1021/acsomega.5c02075 | DOI Listing |
Pestic Biochem Physiol
November 2025
School of Life Sciences, Jiangsu University, 301# Xuefu Road, Zhenjiang 212013, China. Electronic address:
Baculovirus biopesticides are highly susceptible to inactivation by ultraviolet (UV) radiation in sunlight. At present, the DNA repair mechanism in most baculoviruses after ultraviolet (UV) radiation is still unclear. Our previous research found that Bombyx mori nucleopolyhedrovirus Bm65 was a very important UV-specific endonuclease, and the knockout of Bm65 gene increased the sensitivity of BmNPV to UV radiation.
View Article and Find Full Text PDFPestic Biochem Physiol
November 2025
School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add
Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.
View Article and Find Full Text PDFAnal Chim Acta
November 2025
Department of Pharmaceutics, School of Pharmacy, Qingdao University, Qingdao, 266071, China. Electronic address:
Background: Lung ischemia-reperfusion injury (LIRI) is a pathological condition characterized by aggravated oxidative-inflammatory tissue damage that occurs upon blood flow restoration after ischemia. LIRI can lead to severe complications, including primary graft dysfunction in lung transplants and multi-organ failure. However, current treatments remain limited.
View Article and Find Full Text PDFFungal Biol
October 2025
Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
Basic helix-loop-helix (bHLH) transcription factors are essential regulators of various biological processes, including growth, development, and stress responses in eukaryotes. Despite their importance, the specific roles of bHLH factors in entomopathogenic fungi remain inadequately understood. In this study, we identified and characterized the bHLH transcription factor MrbHLH2 in the entomopathogenic fungus Metarhizium robertsii, which is widely used in biological control.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, College of Food and Nutrition, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
In this study, aloe emodin and β-d-glucose pentaacetate were added into potato starch/polyvinyl alcohol for the construction of colorimetric/fluorescent dual-pass intelligent response labels. Inspired by the lotus leaf structure, retained the advantages of the label itself and solved the hydrophilic problem of the label, and further developed a multi-functional dual-channel smart label with hydrophobicity and self-adhesion. The water contact angle of the prepared T-AEB label was 120.
View Article and Find Full Text PDF