98%
921
2 minutes
20
Neural firing response gain and spike threshold are critical intrinsic cell properties that define input-output relations in neurons. Alterations of these cellular properties in hippocampal pyramidal cells (PCs) may strongly influence network dynamics in health and disease. Here we investigated how specific voltage-gated conductance affect these properties in adult rat CA3 pyramidal cells (PCs) in hippocampal slices under near-physiological conditions. We examined currents activated at near-threshold potential - persistent sodium current (I), T-type Ca current (I), M-type K current (I), SK Ca - dependent current (I) and h-type cationic current (I) through pharmacological modulation and analysis of resulting changes. CA3 PCs showed high heterogeneity in firing response gain, likely reflecting individual variations in active conductance at rest. Blocking I by riluzole decreased firing response gain, an effect associated with a reduction in the depolarizing shift (DS) underlying evoked spike trains. Conversely, blocking I with XE991 markedly increased firing response gain, decreased the DS, increased input resistance, and lowered spike threshold. Enhancing I by retigabine produced opposite effects. Blocking I with apamin moderately augmented firing response gain, while blocking I and I exerted no effect on discharge. Our findings identify I and I as key determinants of spike response gain and threshold of CA3 PCs, suggesting that modulators of these currents may effectively modify neuronal input-output relations in both normal and pathological states of hippocampal hypo- or hyperexcitability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.nbd.2025.107034 | DOI Listing |
Cancer Sci
September 2025
Department of Surgery, Asahikawa Medical University, Asahikawa, Japan.
Despite recent advances in neoadjuvant strategies for locally advanced rectal cancer (LARC), optimal chemotherapy regimens and the role of genetic biomarkers in guiding treatment remain unclear. Moreover, predictive markers are urgently needed for radiation-sparing strategies. Therefore, we aimed to assess the predictive and prognostic value of TP53, KRAS, and APC mutations in patients with LARC undergoing neoadjuvant chemotherapy (NACT) by retrospectively analyzing 43 patients with LARC who underwent NACT without radiation.
View Article and Find Full Text PDFJ Cachexia Sarcopenia Muscle
October 2025
Department of Sports Science, College of Natural Science, Jeonbuk National University, Jeonju, Republic of Korea.
Background: Fine particulate matter has developmental toxicity, and midgestation is an important period for the development of foetal skeletal muscle. The ability of exercise to modulate skeletal muscle damage in mice exposed to PM during gestation remains unclear.
Methods: Pregnant C57BL/6 mice were exposed to 50 μg/m PM for 2 h on five consecutive days starting at embryonic day 12.
Front Immunol
September 2025
Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital, Seoul, Republic of Korea.
Background: Cryopyrin-associated periodic syndrome (CAPS) is an autoinflammatory disease caused by a gain-of-function mutation in the gene, which regulates inflammasome-mediated interleukin-1β (IL-1β) production. This leads to recurrent episodes of fever, rash, and arthritis, typically beginning in childhood.
Objective: To demonstrate the role of a missense mutation, c.
Transl Anim Sci
August 2025
Department of Animal Science - Texas A&M University, College Station, TX 77843, USA.
This experiment evaluated the effects of supplementing yeast culture ( ) on in situ ruminal degradability, rumen fermentation and microbiota responses of heifers consuming a forage-based diet. Twelve ruminally-cannulated Angus-influenced heifers were ranked by body weight ( 180 ± 4 kg) and assigned to 4 groups of 3 heifers each. Groups were enrolled in a replicated 3 × 3 Latin square design containing 3 periods of 21 d and 14-d washout intervals.
View Article and Find Full Text PDFVet World
July 2025
Department of Feed and Animal Nutrition, Smart Livestock Industry Study Programme, Faculty of Animal Science, Universitas Brawijaya, Malang, East Java, Indonesia.
Background And Aim: The global demand for sustainable animal protein sources has led to the exploration of insects as alternative feed ingredients. Among these, black soldier fly (BSF) larvae () have demonstrated significant nutritional and functional potential. This study investigated the effects of microwave-dried BSF larvae meal (MDBSFM) on growth performance, intestinal morphology, humoral immune response, and insulin-like growth factor-1 (IGF-1) messenger RNA (mRNA) expression in broiler chickens.
View Article and Find Full Text PDF