98%
921
2 minutes
20
Piezoelectric materials offer wireless bond cleavage in remote areas using ultrasound or other mechanical pressure. Although this approach has enormous therapeutic application potential, the appropriate design of such materials is limited and yet to be explored. In this study, we demonstrate the use of BaTiO nanoparticles for piezocatalytic bond cleavage and the controlled release of organic boronates within live cells, facilitated by medical-grade ultrasound. We demonstrated that piezocatalytically generated hydrogen peroxide (HO) can facilitate bond cleavage without inducing cytotoxicity. However, this process requires optimization of nanoparticle shape, with nanospheres proving to be more suitable compared to nanorods or nanowires. We have demonstrated piezocatalytic uncaging of various biorelevant organic boronates via deboronative hydroxylation outside/inside living cells, and extended this approach to 3D tumor spheroid models. The proposed approach offers a promising pathway for the ultrasonic activation of boronate-based drugs in remote areas of the body, enabling enhanced therapeutic performance.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.5c10556 | DOI Listing |
J Org Chem
September 2025
Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Guangxi Key Laboratory of Chemistry and Molecular Engineering of Medicinal Resources, University Engineering Research Center for Chemistry of Characteristic Medicinal Resources (Guangxi),
Herein, we have developed a Brønsted acid catalyzed 1,5-migration of functional groups from indole-tethered ynamides to prepare a variety of 2-acyltryptamines in good to excellent yields with high site-selectivity at the C2-position of indoles. Mechanistic studies revealed that the reaction underwent an intramolecular cyclization, 1,2-migration of the vinyl group, and C-N bond cleavage by hydrolysis in a one pot. The reaction features broad substrate scope, good functional group compatibility, 1,5-migration of functional groups, C-N bond cleavage to form C-C bond, and diverse 2-acyltryptamine scaffolds.
View Article and Find Full Text PDFBeilstein J Org Chem
September 2025
Department of Chemistry, Institute of Chemical Technology, Mumbai-400019, India.
Herein, we report a highly efficient, environmentally benign protocol for the domino synthesis of 2,4-disubstituted and 4-substituted quinoline molecules. The developed strategy involves an earth-abundant Fe-catalyzed C(sp)-C(sp) bond cleavage of styrene, followed by the hydroamination of the cleaved synthons with arylamines and subsequent C-H annulation to yield two valuable quinoline derivatives. Key features of this protocol include the use of O as an ideal, green oxidant, operational simplicity and scalability, high atom- and step-economy, and cost-effectiveness, collectively enabling the single-step synthesis of two medicinally relevant N-heterocycles in excellent combined yields.
View Article and Find Full Text PDFBeilstein J Org Chem
August 2025
Latvian Institute of Organic Synthesis Aizkraukles 21, Riga, LV-1006, Latvia.
Alloc-protected furfuryl amino alcohols derived from furfural and ʟ- or ᴅ-valinol were subjected to Torii-type ester electrosynthesis to obtain the corresponding unsaturated esters. These served as key intermediates to prepare ()- and enantioenriched unsaturated amides by -Alloc deprotection which induced concomitant methoxymethyl group cleavage, to- rearrangement, and isomerization of the double bond. An oxazoline ring formation in the resulting unsaturated amides provided the corresponding enantioenriched vinyloxazoline.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2025
Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif sur Yvette, France.
Rationale: Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.
Methods: Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis.
Environ Res
September 2025
School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho
The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).
View Article and Find Full Text PDF