98%
921
2 minutes
20
Background: Changes in gene expression in plant hybrids are closely related to heterosis. Currently, few reports on key genes that promote yield advantage formation in Chinese cabbage hybrids exist.
Methods: We conducted a comparative transcriptomic analysis between a Chinese cabbage hybrid (weichunbaiNo.3) and its parents using RNA sequencing, and the differentially expressed genes between the Chinese cabbage hybrid and its parents were confirmed in the rosette and the mature stages. The expression patterns of the differentially expressed genes were examined. The weighted gene coexpression network analysis and virus-induced gene silencing technology were employed to assess the key gene function in yield advantage formation of the Chinese cabbage hybrid.
Results: In total, 3652 and 2768 genes were differentially expressed between the Chinese cabbage hybrid and its parents in the rosette and mature stages, respectively. These differentially expressed genes among the hybrid and its parents presented diverse expression patterns, and the expression levels of the most differentially expressed genes in the hybrid were higher than one of the parents but lower than another. The horticultural characteristics showed that weichunbai No. 3 hybrid had a greater yield advantage compared with parents. A vital hub gene related to yield, BraA09g035160.3C (an gene), was identified by weighted gene coexpression network analysis. Through virus-induced gene silencing technology, the expression level of the BraA09g035160.3C gene in the hybrid was dramatically decreased, which slowed hybrid growth.
Discussion: BraA09g035160.3C gene could play an important regulatory role in the yield advantage formation of weichunbai No. 3. These results will provide an important reference for in-depth research on the molecular mechanism underlying the yield advantage formation of Chinese cabbage hybrids.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12269066 | PMC |
http://dx.doi.org/10.3389/fpls.2025.1627259 | DOI Listing |
Food Res Int
November 2025
Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition
Type 2 diabetes mellitus (T2DM) is a a complex metabolic disorder that poses a serious threat to human health. Although polyphenol extract from rapeseed meal (RMP) has demonstrated inhibitory activity against α-glucosidase, the alleviating effects on T2DM and the underlying molecular mechanisms remain largely unexplored in T2DM. In this study, the antidiabetic effects of RMP were investigated using a T2DM mouse model induced by a high-fat diet (HFD) combined with streptozotocin (STZ) administration.
View Article and Find Full Text PDFACS Omega
September 2025
College of Science & College of Material Science and Art Design, Inner Mongolia Agricultural University, Hohhot 010018, China.
Pesticides are of great significance in ensuring food yield. However, the extensive use of pesticides has led to severe environmental pollution and significant economic losses. Chitosan-based pesticide delivery systems potentially present a favorable approach to enhance pesticide using efficiency.
View Article and Find Full Text PDFJ Hazard Mater
September 2025
State Key Laboratory of Nutrient Use and Management, Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
Cadmium (Cd) contamination in vegetables poses a potential risk to human health; thus an accurate soil Cd threshold is crucial for early warning to ensure safe production. In this study, a national-scale dataset of Cd contents in agricultural soils and vegetables in China was compiled to assess the dietary exposure risk, and a hybrid approach combining conditional inference trees (CITs) and species sensitivity distribution (SSD) was established to derive soil Cd thresholds. The results showed that amaranth, butterhead lettuce, Chinese cabbage, coriander, and garlic had higher Cd accumulation ability among 34 species studied.
View Article and Find Full Text PDFJ Genet Genomics
September 2025
College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, China; Engineering Research Center of South Upland Agriculture, Ministry of Education, Beibei, Chongqing 400715, China; Academy of Agricultural Sciences, Southwest University, Beibei, Chongqing 400715, China. Elec
Flowering time is a critical agronomic trait with a profound effect on the productivity and adaptability of rapeseed (Brassica napus L.). Strategically advancing flowering time can reduce the risk of yield losses due to extreme climatic conditions and facilitate the cultivation of subsequent crops on the same land, thereby enhancing overall agricultural efficiency.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
School of Pharmaceutical Sciences Guizhou University, Guiyang 550025 P. R. China.
Insecticide misuse has caused pest resistance, stressing the need for novel pesticides. The isoxazoline structure offers broad-spectrum effectiveness, mammalian safety, and no cross-resistance. Developing efficient insecticides with this scaffold remains challenging.
View Article and Find Full Text PDF