Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Deficiencies in the development of epithelial structures and delays in cellular maturation can increase the susceptibility of neonates to disease early in life. To investigate human biliary development and its vulnerability to biliary atresia, a severe pediatric cholangiopathy, we engineered multi-compartment biliary organoids (MBOs) from co-cultures of human liver-derived epithelial organoid cells with human endothelial and mesenchymal cells. MBOs derived from normal livers effectively replicated the epithelial structure of the bile duct epithelium and peribiliary glands (PBGs). Conversely, MBOs from diseased livers exhibited defective epithelial layers, a significant epithelial-mesenchymal transition (EMT), and an activation of the TGF-β/Activin-SMAD2/3 signaling, primarily due to intermediary cell sub-populations. Inhibition of TGF-β signaling suppressed EMT and promoted biliary epithelial development in human MBOs and suppressed the phenotype of experimental biliary atresia in neonatal mice. Thus, the modulation of TGF-β-dependent EMT regulates bile duct epithelial development and influences the susceptibility of neonates to biliary injuries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12271497PMC
http://dx.doi.org/10.1038/s41467-025-61442-5DOI Listing

Publication Analysis

Top Keywords

epithelial-mesenchymal transition
8
multi-compartment biliary
8
biliary organoids
8
susceptibility neonates
8
biliary atresia
8
bile duct
8
epithelial development
8
biliary
7
epithelial
6
cellular crosstalk
4

Similar Publications

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Metastasis in its micro and macro state contributes to the poor survival and prognosis rate in Oral Squamous Cell Carcinoma (OSCC) patients. Conventional anti-cancer treatments such as surgery, chemotherapy, and radiotherapy are known for their non-selective killing of rapidly dividing cells, both normal and cancer. To address the drawbacks arising from these modalities, we aimed to target the Glucocorticoid Receptors (GR) of OSCC to selectively co-deliver the Paclitaxel and p53 gene that induces the drug sensitivity and cytotoxicity, thereby inducing the mesenchymal-epithelial transition.

View Article and Find Full Text PDF

Trio fatale: Neutrophils, NETs, and necrosis.

Immunity

September 2025

Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, Austria. Electronic address:

In a recent issue of Nature, Adrover et al. report a neutrophil subset that induces pleomorphic tumor necrosis through neutrophil extracellular trap (NET)-mediated vascular occlusion. This process drives epithelial-to-mesenchymal transition (EMT) and metastasis of perinecrotic cancer cells, reframing necrosis as an active process and uncovering targetable mechanisms to combat cancer dissemination.

View Article and Find Full Text PDF

Metformin attenuates coal dust nanoparticle-induced pulmonary fibrosis by modulating inflammation and epithelial-mesenchymal transition.

Int Immunopharmacol

September 2025

The First Hospital of Anhui University of Science and Technology, Huainan 232000, China; Bengbu Medical University, Bengbu 233030, China. Electronic address:

Coal worker pneumoconiosis is an occupational pulmonary fibrosis (PF) caused by prolonged exposure to respirable coal dust (CD), with limited therapeutic options. Here, we explored the antifibrotic effects of metformin (Met) in CD-nanoparticle (CD-NP)-induced PF, focusing on its preventive and therapeutic potential. In vivo, Met was administered at different doses (low: 31.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF