Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Rapid and scalable production of high-performance composites remains a key challenge in achieving sustainable manufacturing. Here, Exo-press frontal polymerization (EPFP), a novel and transformative method for manufacturing fiber-reinforced thermoset polymer composites, overcoming energy efficiency, scalability, and curing complex geometries, is introduced. Unlike conventional curing methods that require prolonged processing times and high energy, EPFP utilizes exothermic heat to reduce curing time from hours to minutes with minimal external energy. Combining exothermic heat with press molding, the novel EPFP enables the efficient fabrication of complex geometries, such as airfoil skin sections, with high fiber volume fractions (above 60%). In addition, EPFP is compatible with commercial off-the-shelf epoxy by integrating frontal resin, showcasing its versatility and adaptability for diverse industrial applications. Composites manufactured using EPFP exhibit superior thermomechanical properties while significantly reducing energy consumption by 80% and production costs by 40%. This makes it a sustainable and efficient solution for polymer composites manufacturing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/advs.202509336DOI Listing

Publication Analysis

Top Keywords

polymer composites
12
complex geometries
8
exothermic heat
8
composites
5
epfp
5
efficient exothermic
4
exothermic press
4
press ultrafast
4
ultrafast scalable
4
manufacturing
4

Similar Publications

Uniform dispersion of carbon nanotubes in a polymer matrix is a prerequisite for high-performance nanotube-based composites. Here, we report an in situ polymerization route to synthesize a range of phenolic composites with high loading of single-wall carbon nanotubes (SWCNTs, >40 wt%) and continuously tunable viscoelasticity. SWCNTs can be directly and uniformly dispersed in cresols through noncovalent charge-transfer interactions without the need for surfactants, and further concentrated before in situ polymerization of the solvent molecules, yielding phenolic composites in the forms of conductive pastes, highly stretchy doughs, and hardened solids with high nanotube loading and much enhanced electrical conductivity (up to 2.

View Article and Find Full Text PDF

The rapid advancement of three-dimensional (3D) printing technologies has significantly expanded their potential applications such as sensors and detector technology. In this study, the gamma-ray shielding performance of ulexite-doped composite resins fabricated via Digital Light Processing (DLP) 3D printing was experimentally investigated to evaluate radiation attenuation capacity. Composite resins containing different ulexite loadings (0, 1, 3, and 5 wt%) were exposed to gamma rays at energies of 356, 662, 1173, and 1333 keV to evaluate their attenuation characteristics.

View Article and Find Full Text PDF

This study aims at the establishment of a universally applicable etching methodology to unveil the nanoscale crystalline structure of the matrix resin in fiber reinforced thermoplastic (FRTP) composites scanning electron microscopy (SEM). The crystalline structure hierarchically consists of crystalline texture, spherulite and lamella. The details of these structures are key parameters to understand the relationship with the mechanical properties of the material for the advancement.

View Article and Find Full Text PDF

Advances in cellulosic natural fibre-reinforced polymer composites: Properties, additive manufacturing and hybridisation - A review.

Int J Biol Macromol

September 2025

Natural Composites Research Group Lab, Department of Materials and Production Engineering, The Sirindhorn International Thai-German Graduate School of Engineering (TGGS), King Mongkut's University of Technology North Bangkok (KMUTNB), Bangkok, Thailand.

This review critically examines the rapidly advancing field of cellulosic natural fibre-reinforced polymer (NFRP) composites, with a particular emphasis on material innovation aligned with sustainability and environmental responsibility. The review presents a systematic analysis of recent literature evaluating the mechanical, thermal, water absorption, wear, and machining characteristics of NFRP composites, as well as the influence of advanced processing approaches such as additive manufacturing. Special attention is given to the structure-property relationships and hybridisation strategies employed to address limitations such as relatively lower mechanical performance and durability compared to synthetic fibre composites.

View Article and Find Full Text PDF

Multiscale Engineered Heterogeneous Hydrogel Composites for Digital Light Processing 3D Printing.

ACS Appl Mater Interfaces

September 2025

Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.

Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.

View Article and Find Full Text PDF