A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Deep learning empowers genomic selection of pest-resistant grapevine. | LitMetric

Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Crop pests significantly reduce crop yield and threaten global food security. Conventional pest control relies heavily on insecticides, leading to pesticide resistance and ecological concerns. However, crops and their wild relatives exhibit varied levels of pest resistance, suggesting the potential for breeding pest-resistant varieties. This study integrates deep learning (DL)/machine learning (ML) algorithms, plant phenomics, quantitative genetics, and transcriptomics to conduct genomic selection (GS) of pest resistance in grapevine. Building deep convolutional neural networks (DCNNs), we accurately assess pest damage on grape leaves, achieving 95.3% classification accuracy (VGG16) and a 0.94 correlation in regression analysis (DCNN-PDS). The pest damage was phenotyped as binary and continuous traits, and genome resequencing data from 231 grapevine accessions were combined in a Genome-Wide Association Studies, which maps 69 quantitative trait locus (QTLs) and 139 candidate genes involved in pest resistance pathways, including jasmonic acid, salicylic acid, and ethylene. Combining this with transcriptome data, we pinpoint specific pest-resistant genes such as and , which are crucial in herbivore responses. ML-based GS demonstrates a high accuracy (95.7%) and a strong correlation (0.90) in predicting pest resistance as binary and continuous traits in grapevine, respectively. In general, our study highlights the power of DL/ML in plant phenomics and GS, facilitating genomic breeding of pest-resistant grapevine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12265469PMC
http://dx.doi.org/10.1093/hr/uhaf128DOI Listing

Publication Analysis

Top Keywords

pest resistance
16
deep learning
8
genomic selection
8
pest-resistant grapevine
8
breeding pest-resistant
8
plant phenomics
8
pest damage
8
binary continuous
8
continuous traits
8
pest
7

Similar Publications