Using Metal-Organic Framework Nanoparticles for Targeted Codelivery of Bortezomib and Iron Ions to Mitochondrial TOM20 to Induce Ferroptosis for Colorectal Cancer Treatment.

Mol Pharm

Shiyan Key Laboratory of Natural Medicine Nanoformulation Research, Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Hubei University of Medicine, Renmin road No. 30, Shiyan 442000, Hubei, China.

Published: August 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Targeted promotion of iron ion accumulation and inhibition of outer membrane protein function in mitochondria contribute to ferroptosis, thereby boosting anticolorectal cancer (CRC) efficacy. Based on our previous study, the anticancer agent bortezomib (BTZ) was loaded in an iron-derived metal-organic framework (MOF), which was further modified by rhodamine B (RhB), yielding BTZ@RhB-MOF for targeted CRC treatment. Physicochemical characterization results indicated successful preparation of BTZ@RhB-MOF, which had the framework structure and nanosize properties with BTZ and iron ion release under acidic conditions. Further measurements indicated that BTZ@RhB-MOF could be distributed more effectively in tumor tissues, owing to its targeted characteristics. BTZ@RhB-MOF was mainly localized at the mitochondrial outer membrane, where it bound to TOM20 and subsequently destroyed the mitochondria of CRC cells. Then, BTZ@RhB-MOF released the iron ions it was carrying, increasing the concentration of intracellular iron ions and inducing vigorous ferroptosis. Finally, in vitro and in vivo experiments demonstrated that BTZ@RhB-MOF could suppress CRC cells and tumor grafts in CRC cell-bearing mice with favorable safety. Thus, the targeted codelivery of BTZ and iron ions using MOF to the mitochondria of CRC cells was achieved. Therefore, BTZ@RhB-MOF can effectively induce ferroptosis by suppressing TOM20 and increasing iron ion concentrations after the agents are unloaded, offering a potentially targeted strategy for CRC chemotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.molpharmaceut.5c00489DOI Listing

Publication Analysis

Top Keywords

iron ions
16
iron ion
12
crc cells
12
metal-organic framework
8
targeted codelivery
8
induce ferroptosis
8
outer membrane
8
btz iron
8
mitochondria crc
8
iron
7

Similar Publications

A novel electrocatalyst, zirconium ferrite nanoparticles (NPs) (ZrFeO NPs), was synthesized through coprecipitation and calcination processes at 300 °C and 500 °C using iron rust. The ZrFeO NPs were used as catalysts for the hydrogen evolution reaction. Furthermore, these NPs in an alkaline medium exhibited superior properties of a fractional order supercapacitor, based on which a prototype device was fabricated to demonstrate its energy storage applications.

View Article and Find Full Text PDF

Background: Water contamination is a global challenge, primarily due to heavy metal ions like lead (Pb), iron (Fe), cadmium (Cd), andmercury (Hg) as well as dyes. These pollutants enter the ecosystem from industrial waste and runoff, accumulate in the environment and pose a high risk to humans, animals and plants. Various sensors, such as colorimetric sensors, and electrochemical sensors have been developed to detect these ions and dyes.

View Article and Find Full Text PDF

Upconverting nano-paste in 3D-printed phone camera setup for soil phyto-iron sensing.

Anal Chim Acta

November 2025

Institute of Nano Science and Technology, Knowledge City, Sahibzada Ajit Singh Nagar, Sector- 81, Punjab, 140306, India. Electronic address:

Background: Iron (Fe) is an essential micronutrient for plant growth, but the conventional DTPA soil analysis method for detecting available iron has notable limitations, requiring advanced instruments and lengthy preparation time. Developing a more affordable, user-friendly, and efficient method for iron detection in soil could greatly improve crop nutrition management. Here, a facile nanoscopic method was developed to quantify available Fe ions in the soil by forming a luminescence quenching complex in chelation with bathophenanthroline disulphonic acid disodium salt (Fe/BPDS complex).

View Article and Find Full Text PDF

UIon antagonism strategy for cadmium mitigation in Morchella sextelata: Physiological and metabolomic insights.

Fungal Biol

October 2025

Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China; Key Laboratory of Environment Protection, Soil ecological protection and pollution control, Sichuan University & Department of Ecology and Envir

Cadmium (Cd) contamination in edible fungi poses a significant threat to food safety. However, targeted strategies to regulate Cd uptake and enhance Cd stress tolerance in Morchella sextelata remain largely unexplored. Given that M.

View Article and Find Full Text PDF

Preparation of iron-rich belite-sulfoaluminate cement utilizing iron tailings and fluorogypsum.

Environ Res

September 2025

Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan, Hubei 430070, China; School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, Hubei 430070, China. Electronic address: yubiao

In order to promote the development and application of low-carbon cement varieties and the recycling of industrial solid waste, this study used iron tailings and fluorogypsum to prepare iron-rich belite-sulfoaluminate cement (I-BCSA). The suitable conditions for the preparation of I-BCSA in this system were with an excessive addition of 6 wt% of SO in the raw meal, at a calcination temperature of 1250 °C for 1.5 h, and an added-gypsum content of 15 wt%.

View Article and Find Full Text PDF