Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Low bone mineral density (LBMD), which includes osteopenia and osteoporosis, is associated with substantial health care costs. However, current diagnostic methods for LBMD are limited in terms of accuracy and accessibility. This study aims to develop an interpretable machine learning model for LBMD risk assessment and implement it as a web-based clinical decision support tool.

Methods: Data from subjects who underwent dual-energy X-ray absorptiometry (DXA) at the People's Hospital of Guangxi Zhuang Autonomous Region were collected and randomly divided into a training set (70 %) and an internal validation set (30 %). An external validation set was sourced from the National Health and Nutrition Examination Survey (NHANES) database. Least absolute shrinkage and selection operator (LASSO) regression and multiple logistic regression were used for feature selection. Ten common machine learning models were conducted based on the selected features. Model performance was assessed using the area under the receiver operating characteristic curve (AUC), Matthews correlation coefficient (MCC), Brier score, and decision curve analysis (DCA). The decision mechanisms of the best-performing model were explained using SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). The optimal model was deployed as a web application using Streamlit.

Results: A total of 16,274 participants were included in this study. Age, body mass index (BMI), alkaline phosphatase, and total cholesterol were identified as key predictors of LBMD. The logistic regression (LR) model demonstrated superior prediction performance (internal validation set [AUC = 0.902, MCC = 0.684, Brier score = 0.123], external validation set [0.812, 0.358, 0.265]). DCA confirmed its clinical utility. Both SHAP and LIME showed consistent results in identifying predictive factors. The LR model was deployed as a web application to predict LBMD.

Conclusion: Our interpretable machine learning model and web-based implementation provide a free and reliable tool for predicting LBMD, which represents a significant advancement in making LBMD screening more accessible and cost-effective.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bone.2025.117592DOI Listing

Publication Analysis

Top Keywords

validation set
16
machine learning
12
clinical decision
8
decision support
8
low bone
8
bone mineral
8
mineral density
8
model
8
interpretable machine
8
learning model
8

Similar Publications

Objective: To develop and validate a nomogram model for predicting the risk of hyperuricemia (HUA) in perimenopausal women.

Methods: In this study, physical examination information of perimenopausal women was collected at the First Affiliated Hospital of University of Science and Technology of China. We utilized the Least Absolute Shrinkage and Selection Operator (Lasso) and binary logistic regression to investigate the risk factors of HUA among perimenopausal women.

View Article and Find Full Text PDF

Objective: Anoikis is an anchorage-dependent programmed cell death implicated in multiple pathological processes of cancers; however, the prognostic value of anoikis-related genes (ANRGs) in hepatocellular carcinoma (HCC) remains unclear. Our study aims to develop an ANRGs-based prediction model to improve prognostic assessment in HCC patients.

Methods: The RNA-seq profile was performed to estimate the expression of ANRGs in HCC patients.

View Article and Find Full Text PDF

Maximizing theoretical and practical storage capacity in single-layer feedforward neural networks.

Front Comput Neurosci

August 2025

Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States.

Artificial neural networks are limited in the number of patterns that they can store and accurately recall, with capacity constraints arising from factors such as network size, architectural structure, pattern sparsity, and pattern dissimilarity. Exceeding these limits leads to recall errors, eventually leading to catastrophic forgetting, which is a major challenge in continual learning. In this study, we characterize the theoretical maximum memory capacity of single-layer feedforward networks as a function of these parameters.

View Article and Find Full Text PDF

Hybrid two-stage CNN for detection and staging of periodontitis on panoramic radiographs.

J Oral Biol Craniofac Res

August 2025

Neura Integrasi Solusi, Jl. Kebun Raya No. 73, Rejowinangun, Kotagede, Yogyakarta, 55171, Indonesia.

Background: Periodontal disease is an inflammatory condition causing chronic damage to the tooth-supporting connective tissues, leading to tooth loss in adults. Diagnosing periodontitis requires clinical and radiographic examinations, with panoramic radiographs crucial in identifying and assessing its severity and staging. Convolutional Neural Networks (CNNs), a deep learning method for visual data analysis, and Dense Convolutional Networks (DenseNet), which utilize direct feed-forward connections between layers, enable high-performance computer vision tasks with reduced computational demands.

View Article and Find Full Text PDF

Most of the United States (US) population resides in cities, where they are subjected to the urban heat island effect. In this study, we develop a method to estimate hourly air temperatures at resolution, improving exposure assessment of US population when compared to existing gridded products. We use an extensive network of personal weather stations to capture the intra-urban variability.

View Article and Find Full Text PDF