Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Protein condensates use multivalent binding and surface tension to assemble actin filaments into diverse architectures, reminiscent of filopodia and stress fibers. During this process, nucleation of new filaments and elongation of existing filaments inherently compete for a shared pool of actin monomers. Here we show that a balance between these competing processes is required to deform condensates of VASP, an actin binding protein, into structures with high aspect ratios. Addition of magnesium, which promotes filament nucleation, helped actin to deform condensates into high aspect ratio structures. In contrast, addition of profilin, which inhibits filament nucleation, allowing existing filaments to elongate, caused actin to assemble into ring-like bundles that failed to substantially increase condensate aspect ratio. Computational modeling helped to explain these results by predicting that a group of short linear filaments, which can apply asymmetric pressure to the condensate boundary, is needed to increase condensate aspect ratio. In contrast, a small number of long filaments with the same total actin content should fail to overcome the droplet surface tension, forming a ring-like bundle. To test these predictions, we introduced gelsolin, which severed log filaments within rings, creating new barbed ends. The resulting set of shorter filaments regained the ability to deform condensates into high aspect ratio structures. Collectively, these results suggest that a balance of actin filament nucleation and elongation is required to deform protein condensates. More broadly, these findings illustrate how protein condensates can balance multiple kinetic processes to direct the assembly of diverse cytoskeletal architectures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12262456PMC
http://dx.doi.org/10.1101/2025.06.18.660423DOI Listing

Publication Analysis

Top Keywords

protein condensates
16
aspect ratio
16
deform condensates
12
high aspect
12
filament nucleation
12
filaments
9
actin
8
actin filaments
8
surface tension
8
existing filaments
8

Similar Publications

Transcriptional condensates enrich phosphorylated PRMT2 to stimulate H3R8me2a deposition and hypoxic response in glioblastoma.

Sci China Life Sci

September 2025

State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University Cancer Institute and Hospital, Tianjin Key Labora

Histone arginine methylation by protein arginine methyltransferases (PRMTs) is crucial for transcriptional regulation and is implicated in cancers. Despite their therapeutic potential, some PRMTs present challenges as drug targets due to their context-dependent activities. Here, we demonstrate that hypoxia triggers the rapid condensation of PRMT2, which is essential for its histone H3R8 asymmetric dimethylation (H3R8me2a) activity.

View Article and Find Full Text PDF

Navigating condensate micropolarity to enhance small-molecule drug targeting.

Nat Chem Biol

September 2025

Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.

Many pharmaceutical targets partition into biomolecular condensates, whose microenvironments can significantly influence drug distribution. Nevertheless, it is unclear how drug design principles should adjust for these targets to optimize target engagement. To address this question, we systematically investigated how condensate microenvironments influence drug-targeting efficiency.

View Article and Find Full Text PDF

The global rise in antibiotic resistance demands the urgent development of new antibacterial agents. This study investigated the antibacterial potential of four synthesized methoxy and thiophene chalcone derivatives (designated 3a, 4a, 3b, and 4b) against clinically relevant bacterial pathogens. These compounds were prepared through Claisen-Schmidt condensation, while their chemical structures were verified through applying Fourier-transform infrared, mass spectrometry, H nuclear magnetic resonance (NMR), and C NMR.

View Article and Find Full Text PDF

We study how protein condensates respond to a site of active RNA transcription (i.e., a gene promoter) due to electrostatic protein-RNA interactions.

View Article and Find Full Text PDF

Distribution and Relative Size of Protein Binding Domains Cooperatively Influence Phase Separation of Protein-RNA Mixtures.

J Phys Chem B

September 2025

Hefei National Research Center for Physical Sciences at the Microscale and Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Multivalent protein-protein interactions play essential roles in mediating liquid-liquid phase separation (LLPS) that drives biomolecular condensate formation. Here, we systematically investigate how the spatial distribution and relative size of protein binding domains (PBDs) would influence LLPS in a mixture of spherical proteins and RNA single strands by using a patchy-particle polymer model, wherein each protein contains a fixed number of PBDs on the surface distributed closely or sparsely. Intriguingly, we find that LLPS behavior exhibits a nontrivial dependence on the cooperative interplay between PBD distribution and protein size: while sparsely distributed PBDs are more favorable to LLPS for small proteins, closely packed PBDs facilitate LLPS for larger counterparts.

View Article and Find Full Text PDF