98%
921
2 minutes
20
Motivation: Gene expression varies across a tissue due to both the organization of the tissue into spatial domains, i.e. discrete regions of a tissue with distinct cell type composition, and continuous spatial gradients of gene expression within different spatial domains. Spatially resolved transcriptomics (SRT) technologies provide high-throughput measurements of gene expression in a tissue slice, enabling the characterization of spatial gradients and domains. However, existing computational methods for quantifying spatial variation in gene expression either model only spatial domains-and do not account for continuous gradients of expression-or require restrictive geometric assumptions on the spatial domains and spatial gradients that do not hold for many complex tissues.
Results: We introduce GASTON-Mix, a machine learning algorithm to identify both spatial domains and spatial gradients within each domain from SRT data. GASTON-Mix extends the mixture-of-experts (MoE) deep learning framework to a spatial MoE model, combining the clustering component of the MoE model with a neural field model that learns a separate 1D coordinate ("isodepth") within each domain. The spatial MoE is capable of representing any geometric arrangement of spatial domains in a tissue, and the isodepth coordinates define continuous gradients of gene expression within each domain. We show using simulations and real data that GASTON-Mix identifies spatial domains and spatial gradients of gene expression more accurately than existing methods. GASTON-Mix reveals spatial gradients in the striatum and lateral septum that regulate complex social behavior, and GASTON-Mix reveals localized spatial gradients of hypoxia and TNF-α signaling in the tumor microenvironment.
Availability And Implementation: GASTON-Mix is available at https://github.com/raphael-group/GASTON-Mix.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261403 | PMC |
http://dx.doi.org/10.1093/bioinformatics/btaf254 | DOI Listing |
Environ Monit Assess
September 2025
Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes 6, 41012, Seville, Spain.
Marine ecosystems, particularly estuaries, are increasingly threatened by anthropogenic pressures. The Odiel Estuary has suffered severe contamination from acid mine drainage and industrial activities. Since 1986, mitigation efforts have been implemented, yet their long-term ecological effectiveness remains under-evaluated.
View Article and Find Full Text PDFJ Magn Reson Imaging
September 2025
School of Biomedical Engineering, Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China.
Background: The dynamic progression of gray matter (GM) microstructural alterations following radiotherapy (RT) in patients, and the relationship between these microstructural abnormalities and cortical morphometric changes remains unclear.
Purpose: To longitudinally characterize RT-related GM microstructural changes and assess their potential causal links with classic morphometric alterations in patients with nasopharyngeal carcinoma (NPC).
Study Type: Prospective, longitudinal.
J Magn Reson Imaging
September 2025
Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
Background: Parkinson's disease (PD) often presents with lateralized motor symptoms at onset, reflecting asymmetric degeneration of the substantia nigra (SN). Neuromelanin (NM) loss and iron accumulation are hallmarks of SN pathology in PD, but their spatial distribution and interrelationship in PD patients with right-sided (PDR) or left-sided (PDL) motor symptom onset remain unclear.
Purpose: To investigate the spatial vulnerability and interrelationship of NM and iron in the SN among PDR, PDL, and healthy controls (HCs) using MRI.
J Anal At Spectrom
September 2025
Department of Environmental Systems Science, ETH Zurich Universitätstrasse 16 8092 Zurich Switzerland.
Plastic pollution in marine environments poses ecological risks, in part because plastic debris can release hazardous substances, such as metal-based additives. While microplastics have received considerable attention as vectors of contaminants, less is known about larger macroplastics and their role in the spatial and temporal redistribution of substances. In this study, pristine, store-bought plastic items and macroplastics recovered from the North Pacific Subtropical Gyre (NPSG) were analysed using Fourier-Transform Infrared Spectroscopy (FTIR) to identify polymer types, and bulk acid digestion followed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for total metal quantification.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Country College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Xianyang, Shaanxi, China.
Introduction: The discrepancies in near-soil-surface hydrologic processes triggered by herbage spatial distribution pattern greatly influence the variation in hillslope erosion process. However, knowledge about the influence of herbage spatial distribution pattern on hillslope erosion is still limited.
Methods: In the current study, runoff plots (length × width × depth, 2 × 1 × 0.