98%
921
2 minutes
20
Despite advances in immunotherapy treatment, nonresponse rates remain high, and mechanisms of resistance to checkpoint inhibition remain unclear. To address this gap, we performed spatial transcriptomic and proteomic profiling on human hepatocellular carcinoma tissues collected before and after immunotherapy. We developed an interpretable, multimodal deep learning framework to extract key cellular and molecular signatures from these data. Our graph neural network approach based on spatial proteomic inputs achieved outstanding performance (ROC-AUC > 0.9) in predicting patient treatment response. Key predictive features and associated spatial transcriptomic profiles revealed the multi-omic landscape of immunotherapy response and resistance. One such feature was an interface niche expressing restrictive extracellular matrix factors that physically separates tumor tissue and lymphoid aggregates in nonresponders. We integrate this and other spatially-resolved signatures into SPARC, a multi-omic "fingerprint" comprising scores for immunotherapy response and resistance mechanisms. This study lays groundwork for future patient stratification and treatment strategies in cancer immunotherapy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12259099 | PMC |
http://dx.doi.org/10.1101/2025.06.11.656869 | DOI Listing |
Front Immunol
September 2025
Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar.
Cancer is a multifaceted disease driven by a complex interplay of genetic predisposition, environmental factors and lifestyle habits. With the accelerating pace of cancer research, the gut microbiome has emerged as a critical modulator of human health and immunity. Disruption in the gut microbial populations and diversity, known as dysbiosis, has been linked with the development of chronic inflammation, oncogenesis, angiogenesis and metastasis.
View Article and Find Full Text PDFFront Immunol
September 2025
Clinical Nutrition and Dietetics Unit, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.
In the last decades, immunotherapy has revolutionized cancer treatment. Despite its success, a significant number of patients fail to respond, and the underlying causes of ineffectiveness remain poorly understood. Factors such as nutritional status and body composition are emerging as key predictors of immunotherapy outcomes.
View Article and Find Full Text PDFFront Immunol
September 2025
Precision Pharmacy and Drug Development Center, Department of Pharmacy, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China.
Gliomas are the most common primary malignant tumors of the central nervous system (CNS), and despite progress in molecular diagnostics and targeted therapies, their prognosis remains poor. In recent years, immunotherapy has emerged as a promising treatment modality in cancer therapy. However, the inevitable immune evasion by tumor cells is a key barrier affecting therapeutic efficacy.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.
View Article and Find Full Text PDFJ Immunother Precis Oncol
August 2025
Department of Medical Oncology, Sir H N Reliance Foundation Hospital and Research Centre, Mumbai, India.
Pulmonary sarcomatoid carcinoma (PSC) is a rare and aggressive subtype of non-small cell lung cancer (NSCLC) with limited treatment options and poor prognosis. mutations generally respond to tyrosine kinase inhibitors (TKIs)-based targeted therapy but are typically associated with resistance to immunotherapy. We report a case of oligometastatic PSC harboring compound mutations (p.
View Article and Find Full Text PDF