Artificial intelligence in inflammatory bowel disease endoscopy - a review of current evidence and a critical perspective on future challenges.

Therap Adv Gastroenterol

Department of Gastroenterology and Endoscopy, IRCCS Ospedale San Raffaele, Via Olgettina 58, Milan 20132, Italy.

Published: July 2025


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Inflammatory bowel disease (IBD) is a chronic and relapsing immune-mediated condition with a rising global prevalence. Endoscopic diagnosis, monitoring and surveillance currently depend on individual endoscopists, introducing subjectivity, variability, delays and potential diagnostic discrepancies. Artificial intelligence (AI) is poised to transform these processes. To date, most AI applications have focused on ulcerative colitis (UC) severity assessment, demonstrating promising results in replicating human evaluation, standardizing severity evaluation and facilitating the application of more complex scoring systems. Research into AI for Crohn's disease (CD) has lagged behind UC, due to challenges such as disease heterogeneity and transmural extension; nevertheless, significant progress has been made to automate capsule endoscopy readings for CD. Beyond the grading of disease severity, AI is also being explored for tasks such as identifying dysplastic lesions, differentiating IBD from other conditions, assessing intestinal barrier permeability, guiding treatment decisions and integrating data from multiple omics, though studies in these areas remain exploratory. This review examines the current landscape of AI applications in IBD endoscopy, summarizes key studies in the field and explores the future potential of AI in IBD care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12256760PMC
http://dx.doi.org/10.1177/17562848251350896DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
inflammatory bowel
8
bowel disease
8
disease
5
intelligence inflammatory
4
disease endoscopy
4
endoscopy review
4
review current
4
current evidence
4
evidence critical
4

Similar Publications

Arthroplasty surgery is a common and successful end-stage intervention for advanced osteoarthritis. Yet, postoperative outcomes vary significantly among patients, leading to a plethora of measures and associated measurement approaches to monitor patient outcomes. Traditional approaches rely heavily on patient-reported outcome measures (PROMs), which are widely used, but often lack sensitivity to detect function changes (e.

View Article and Find Full Text PDF

Background: As populations age, informal caregivers play an increasingly vital role in long-term care, with 80% of care provided by family members in Europe. However, many individuals do not immediately recognize themselves as caregivers, especially in the early stages. This lack of awareness can increase physical and emotional stress and delay access to support services.

View Article and Find Full Text PDF

Metagenomic analyses of microbial communities have unveiled a substantial level of interspecies and intraspecies genetic diversity by reconstructing metagenome-assembled genomes (MAGs). The MAG database (MAGdb) boasts an impressive collection of 74 representative research papers, spanning clinical, environmental, and animal categories and comprising 13,702 paired-end run accessions of metagenomic sequencing and 99,672 high quality MAGs with manually curated metadata. MAGdb provides a user-friendly interface that users can browse, search, and download MAGs and their corresponding metadata information.

View Article and Find Full Text PDF

Bariatric surgery is an effective treatment for morbid obesity, but patient outcomes differ greatly because of a variety of phenotypes, comorbidities, and postoperative adherence. In bariatric care, artificial intelligence (AI) and machine learning (ML) are becoming revolutionary tools because traditional predictive models based on BMI and demographic variables are unable to account for these complexities. To put it simply, AI is a branch of computer science that enables machines to perform tasks that typically require human intelligence.

View Article and Find Full Text PDF

The rapid evolution of digital tools in recent years after COVID-19 pandemic has transformed diagnostic and therapeutic practice in neurology. This shift has highlighted the urgent need to integrate digital competencies into the training of future specialists. Key innovations such as telemedicine, artificial intelligence, and wearable health technologies have become central to improving healthcare delivery and accessibility.

View Article and Find Full Text PDF