Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: The imbalance of macrophage polarization plays a pivotal role in the progression of rheumatoid arthritis (RA). Reprogramming macrophages from the pro-inflammatory M1 phenotype to the anti-inflammatory M2 phenotype is considered a promising therapeutic strategy.

Methods: To address this challenge, Panax notoginseng polysaccharides (PNP) with varying molecular weights were chemically conjugated with deoxycholic acid (DC) to obtain amphiphilic conjugates (PNP-DC), which self-assembled into micelles (PNP-Ms). After screening for optimal molecular weight, folic acid (FA) was introduced onto the micelle surface, and Polyphyllin I (PPI) was encapsulated to form FA-modified, PPI-loaded micelles (FA-PPI-Ms) with macrophage-targeting capability.

Results: FA-PPI-Ms showed enhanced cellular uptake via FA receptor-mediated endocytosis and effectively eliminated reactive oxygen species (ROS), reduced inflammatory cytokine production, and exhibited good biosafety. In vivo, FA-PPI-Ms significantly alleviated joint swelling and inflammation in RA rat models. Mechanistic studies based on RNA sequencing and experimental validation revealed that FA-PPI-Ms suppressed the JAK2/STAT3 signaling pathway, thereby promoting M2 macrophage polarization and restoring the M1/M2 balance.

Conclusion: This study presents a novel FA-PPI-Ms delivery system for targeted macrophages. By modulating polarization through inhibition of JAK2/STAT3 signaling, the system offers a promising therapeutic strategy for RA and potentially other inflammatory diseases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC12261558PMC
http://dx.doi.org/10.1186/s12951-025-03576-8DOI Listing

Publication Analysis

Top Keywords

macrophage polarization
12
panax notoginseng
8
progression rheumatoid
8
rheumatoid arthritis
8
signaling pathway
8
promising therapeutic
8
jak2/stat3 signaling
8
fa-ppi-ms
5
engineered panax
4
notoginseng polysaccharide
4

Similar Publications

While human autopsy samples have provided insights into pulmonary immune mechanisms associated with severe viral respiratory diseases, the mechanisms that contribute to a clinically favorable resolution of viral respiratory infections remain unclear due to the lack of proper experimental systems. Using mice co-engrafted with a genetically matched human immune system and fetal lung xenograft (fLX), we mapped the immunological events defining successful resolution of SARS-CoV-2 infection in human lung tissues. Viral infection is rapidly cleared from fLX following a peak of viral replication, histopathological manifestations of lung disease and loss of AT2 program, as reported in human COVID-19 patients.

View Article and Find Full Text PDF

, a macrophage-residing parasite, expresses virulence factors that intercept macrophage signaling and inflicts leishmaniasis. Recently described virulence factors- eEF-1α (eukaryotic elongation factor), LmjF_36_3850 ( F_36_3850), LdTyrPIP_22 (LDBPK_220120.1) and LmjMAPK ( mitogen activated protein kinase)-4/12 selectively modulate the activities of kinases, phosphatases and metabolism of phosphatidylinositol influencing the infection outcome.

View Article and Find Full Text PDF

Directional Biomimetic Scaffold-Mediated Cell Migration and Pathological Microenvironment Regulation Accelerate Diabetic Bone Defect Repair.

ACS Nano

September 2025

Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Key Laboratory of Innovation and Transformation of Advanced Medical Devices of Ministry of Industry and Information Technology, National Medical Innovation Platform for Industry-Education Integration in Advanced Medical Dev

Hyperglycemia-induced oxidative stress and inflammation critically impair diabetic bone defect repair. Here, a radially oriented microchannel scaffold (D-GSH@QZ) was developed via a directional freezing technique integrated with photo-cross-linking strategies. The scaffold was fabricated from gelatin methacryloyl, silk fibroin methacryloyl, and nanohydroxyapatite (HAp) to mimic the natural bone matrix, while incorporating quercetin-loaded ZIF-8 nanoparticles (Qu@ZIF-8) for pathological microenvironment modulation.

View Article and Find Full Text PDF

Postmenopausal osteoporosis (PMOP) is a common bone metabolic disorder in middle-aged and elderly women, yet its pathogenesis remains unclear. This study investigates the effect of nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency on bone homeostasis to provide insight into the mechanisms underlying PMOP. Sixteen female SD rats were randomly assigned to Sham and ovariectomized (OVX) groups.

View Article and Find Full Text PDF

In this work, a fluorescent probe, VanPI-CarE, with a vanillin-pyridine-imidazole core structure was developed for carboxylesterase (CarE) detection in macrophage polarization during bone homeostasis. The probe responded to CarE with a distinct fluorescence reporting signal at 490 nm upon excitation at 355 nm. Tests in solution showed the advantages of VanPI-CarE, including high sensitivity, excellent stability under various working conditions, high selectivity, and low cytotoxicity.

View Article and Find Full Text PDF